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PREFACE

This book is intended to provide an introductory
course in the Calculus for the use of students of natural
and applied science whose knowledge of mathematics
is slight. All the mathematics that the student is

assumed to know is algebra up to quadratic equations

;

elementary trigonometry up to the formulae of sines,

cosines, and tangents of compound angles ; the elements
of geometry; and the method of graphs.

Infinite series are essentially difficult and unconvincing
unless treated rigorously— as the old conundrum of Achilles

and the tortoise shows—and there is no need to use them
in the elementary parts of the subject. They have there-

fore been avoided altogether.

Definite problems, dealing with actual things, precede

the analytical treatment, which I have tried to make simple

and convincing; and I hope any reader who pursues the

subject further in the standard works will find that he has
only to extend and qualify the proofs, not to unlearn them.

I have introduced and used limits in the first chapter

before defining them, for the same reason that I should

show a child a herring and tell him about its habits of life

before describing it to him as one of two distinct but closely-

allied species of malacopterygian fishes of the genus Clupea.

The pictures of celebrated mathematicians and scientists

are intended to arouse some human interest in mathemati-

cal science and the history of its progress. Some of the

founders of the science lived more than ordinarily interesting

lives, and if the mathematician ignores the human side of

things, he can hardly expect humanity not to ignore him.

Perhaps the title of the book needs a word of explana-

tion. In applied mechanics it is usual to discuss the theo-

retical principles of mechanics as well as their applications.

This line has been followed here, the treatment of practical

problems being preceded by a fairly full discussion of the

necessary theory.
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The examples appended to the several chapters have been

specially chosen to illustrate particular points, and should

all be worked by the student. It has not been thought
necessary to supply long sets of examples, such sets being
rarely worked through by the student. To help the private

student, whose needs I have had specially in mind, solu-

tions of all the difficult problems are given, and answers
to all exercises and problems. Many of the exercises,

especially those in the "Miscellaneous Exercises", are

taken by permission from recent University and Army
Examination Papers. I gratefully acknowledge my in-

debtedness to the authorities of the Universities of Cam-
bridge, London, and Glasgow, and to the Comptroller of

H.M. Stationery Office, for permissions granted.

I wish also to thank Mr. J. Dougall, M.A., D.Sc,
F.R.S.E., for the great help he has given me in passing
the book through the press. He has read all the proofs,

and has made many valuable suggestions. Mr. D. J.

Richards, M.A., also kindly read the MS. in the earlier

stages, and I am indebted to him for numerous criticisms.

The books to which I am most indebted are G. H.
Hardy's Pure Mathematics, on critical points, and the

treatises of Lamb and Gibson. I have also found Dr. A.
N. Whitehead's book. An Introduction to Mathematics,
most suggestive. The data used and methods described
in the chapter on physical chemistry are based on the classic

work of J. H. Van 't Hoff, Lectures on Theoretical and
Physical Chemistry, and the treatise of W. C. M'C. Lewis,
A System, of Physical Chemistry (2 vols.). I have also con-
sulted R. A. Lehfeldt's A Textbook ofPhysical Chemistry.

F. F. P. B.

Glasgow, July, 1921.

The publishers gratefully acknowledge the kindness of Miss Anna
Guldberg and Professor Torup of the University of Christiania in

sending them a biography of C. M. Guldberg (p. ^12) and the photo-

graph from which the half-tone facing p. jo6 was reproduced.
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APPLIED CALCULUS

Introduction

'

' What a time of it had we, were all men's life and trade still, in all

parts of it, a problem, a hypothetic seeking, to be settled by painful

Logics and Baconian Inductions! The Clerk in Eastcheap cannot

spend the day in verifying his Ready Reckoner; he must take it as

verified, true and indisputable ; or his Book-keeping by Double Entry
will stand still. ' Where is your Posted Ledger?' asks the Master at

night. ' Sir,' answers the other, 'I was verifying my Ready Reckoner
and find some errors. The Ledger is 1

' Fancy such a thing

!

"True, all turns in your Ready Reckoner being moderately correct,

being not insupportably incorrect. "

—

Carlyle.

In the year 1612, there was an unusually heavy
vintage in Germany, and it appeared that there would
not be enough barrels to hold all the wine. The
amount of wine which would go into a barrel of

given shape and dimensions could not be calculated,

so the astronomer Kepler at once took the problem
in hand. For many years, he had been working at

problems which required the finding of areas con-

tained by closed curves, and he had invented special

methods of his own for solving these problems.

These methods he applied to the wine tun, and wrote

a book called Nova Stereometria Doliorum (a new
method of measuring wine casks), published in 1615.

( D 102

)

1 2
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This book is the earliest work on the subject now
called "The Integral Calculus".

Before explaining the method Kepler used, it will

clear the ground if we deal with a few points of

elementary geometry.

Position of a Point in a Plane.

The position of a point in a plane may be specified

in the following way.

Suppose the plane in question is the plane of this

paper.

Rule two straight lines, X'OX, Y'OY, of unlimited

length, perpendicular to each other, and intersecting

in the point O, called the Origin (fig. i).

These lines divide the plane into four quadrants.

If we were drawing a map, we should call these

quadrants,
the N.E. quadrant,

N.W. „
S.E. ,,

s.w. „

Take a point P (fig. i) anywhere in the N.E.
quadrant.

Draw PM perpendicular to X'OX, meeting X'OX
in M.

If we measure the length of OM and of MP we
shall know the exact position of P in the N.E. quad-

rant with reference to X'OX and Y'OY.
• Thus, suppose the length of OM to be i in. and
that of MP 2 in., then P is i in. from Y'OY, and
2 in. from X'OX.

It is usual to denote OM by x and MP by^. The
two lengths denoted by x and y are called the co-

ordinates of P. When it is necessary to distinguish
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between them, x is called the abscissa and y the

ordinate.

The point P is referred to as the point (x, y). In

the actual case taken above

X = I and j>/ = 2 and P is the point (i, 2).

A common unit of length is understood in all

measurements—the inch in the above case. The figure

is half full size.

P
»---r

M'

X'

Y'

R
Fig. I ,

The base lines X'OX and Y'OY are called the

axes ; X'OX, the x axis, and Y'OY, the y axis. All

measurements are made from these lines, in directions

perpendicular to them.

Convention of Signs.

Every number is associated with a sign, implied or

stated. This sign is either plus or minus. In speci-
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fying the point P (i, 2), the positive sign is implied,

i.e. P is the point (+ i, + 2).

If a measurement is m.ade in one direction when the

number expressing it is positive, it must be made in

the opposite direction when the number expressing it is

negative.

This rule means that we regard length as a magni-

tude to which a plus or minus sign may be given.

The directions usually taken as positive are shown
by the arrow-heads at X and Y (fig. i). Thus, a line

drawn in the direction from O to X, or from O to Y,

is positive, while a line drawn in the direction from

O to X', or from O to Y', is negative. This rule at

once enables us to specify points in the remaining

three quadrants.

The point specified by (i, — 2), for instance, is

plotted, i.e. drawn, by measuring off OM, equal

to I in., and MQ, equal to 2 in., MQ being

measured from X'OX in the direction opposite to

OY.
Likewise, the point (—2,-3) is the point R

(see fig. i) where

OM' is 2 in. long,

M'R is 3 in. long.

The point (-2, 3) lies in the X'OY (the N.W.)
quadrant.

It does not matter which quadrant we take as cor-

responding to (+ X, ^ y) points—it is usual to take

the N.E. one—but it is essential to adhere to the sign

convention.

The rule may be remembered by the mnemonic:

Plus, to the right; minus, to the left.

Positive, height; negative, depth.
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The signs of x and y in the different quadrants are

then
{x+,y +), N.E.

{x-,y^), N.W.
{x-,y-),S.W.
{x+,y-),S.^.

A Graph.

Consider the equation

f +^= I (I)

9 4

This equation gives

y = 4(.-?)9'

:>^ = ±2^1 -| (2)

This formula enables us to calculate y when x is

given, but there is evidently a limit to the admissible

values of x. No ordinary number can be equal to

the square root of a negative number; for if ^ were

such a number equal to the square root of, say, — 4,

p = V^M,
then /^ = — 4.

But the square of any number, be it positive or

negative, is a positive number.

Hence, if r is to be an ordinary number, (i — —

j

must be positive.

(i — — j will be positive so long as x^ does not
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exceed 9, i.e. so long as x is not greater than 3,

numerically.

x^
When a: is - 3, the value of— is i, and when x is

x^ 9 '

+ 3, the value of — is i, and for all values of x
9

_5p2

between — 3 and + 3, the value of — is less than i.

The permissible values oi x lie, therefore, between

At = - 3 and X = + 3,

and on referring to equation (i) it is evident that

when X has either of these values, y must be zero.

We will now give x a series of values between — 3
and + 3, and calculate^. A few corresponding values

are given below.

X
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It is convenient to use squared paper for plotting.

The points are plotted in fig. 2.

A fair curve, suggesting an ellipse, can be drawn
through these points.

The "graph" of a mathematical equation is a
line in a plane so drawn that the co-ordinates of

every point in it satisfy the given equation.

The line may be either a straight line or a curved

one.

Thus the curve roughly outlined in fig. 2 is the

graph of — +-^ = I.

9 4
We can show that the graph of the equation

^+^ = I

9 4
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is an ellipse, but before we do this we must say what
we mean by an "ellipse".

Definition and Geometrical Construction of an
Ellipse.

Suppose a point moves in a plane in such a way
that the sum of the distances of the point from two
fixed points in the plane is constant. The moving
point traces out a path, and this path is called an
ellipse.

The curve may be drawn in the following way.
Suppose P and Q are the given fixed points (fig. 3).

F'gr- 3

Fix pins at P and Q, and tie a loop of thread round
the pins so that, when stretched out tight, its total

length (PQ + QR + RP) is equal to the given sum
of the distances of the moving point from P and

Q, plus PQ. Since PQ is constant, PR + RQ
must be constant, wherever R may be. Place a
pencil point at R, as shown in fig. 3, and move it
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round. It will trace out a curve which possesses the

property that PR + RQ is constant wherever R may
be. The curve is therefore, by definition, an ellipse.

We will now use this property to find the equation

which must be satisfied by the co-ordinates of the

moving point.

The Equation of an Ellipse.

Join the given fixed points P and Q, and produce

the line indefinitely, X'X (fig. 4).

X^

Bisect PQ at O and through O draw Y'Y perpendi-

cular to PQ of unlimited length.

Take O as the origin, and X'X as axis of x and

Y'Y as axis of jv.

Let R be a point on the ellipse.

The co-ordinates of R are

:!c = OS
>/ = SR.

Now PR -I- RQ must be constant (the property of

the ellipse).
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Let the constant be m. Then

PR + RQ = m (4)

The length PQ is also given.

Let PQ = /

.-. OQ = L (5)

Also PR = N^PS' + SR'

= Vpo + OS^ + SR^

and RQ = '^SQ^ + SR'

m by (4).
2

To simplify this equation, we have, on squaring.

2
+ X + y^ -\ X +y'a

+ 2^(i + /+y)(£-.Vy)

X^+yi + L-VL42
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Simplifying this equation, we get

,2.

—(m^ - /2) _ x%m^ - P) - y^m^ = o (6)

4

When R is at B, PB = BQ and 2 PB = m;

hence if

OB = b,

2a/— + 6^ = m.
4

f^ = ^^^Hi! (7)
4

Similarly, when R is at A,

PA + QA = m = PQ + 2 QA;

and, if OA = a, QA = « -
2

m.
2/

2fl = m.

2

We can therefore rewrite (6) as

a = ^ (8)

w •(9)

This equation is therefore that of an ellipse, a and

b are constants which settle the size and shape of the

ellipse. O, the origin in fig. 4, is' called the centre;

OA, which is equal to a, the semi-major axis; and

OB, which is equal to b, the semi-minor axis of the

ellipse.
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The graph of



INTRODUCTION 13

It is evident from the symmetry of the figure that

we need only find the area of the portion lying in the

positive quadrant, for if A stands for this area then

4A stands for the required area.

Divide OA into a certain number, say 10, of equal

parts by the points of division p^, p^, p^, &c. p^ coin-

cides with O and ^i„ with A. Through these points

of division draw straight lines parallel to Y'OY,
meeting the ellipse in points q^,, q^, q^, &c.

^'o

coincides with C, and q^^a with/m ^"d A.

P, 4 4 4 4 4 4 4 4 4 5<

Fig:. 6

Through each of these points q^, q^, q^, &c., draw
straight lines parallel to X'OX to meet the neigh-

bouring ordinates in v and /, i.e. the line parallel to

X'OX through q^ is drawn to intersect the line/^5'4 in

l^ and the line p^q^ in Wg.

We can thus construct two rectilinear figures,

shown in figs. 6 and 7, one of which lies wholly

within the given figure OAC, while the given figure

lies wholly within the other.

There is no difficulty in calculating the areas of

these rectilinear figures as each is composed of a set
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of rectangles. The length and the breadth of each

of these rectangles are known.
The area of the figure {p^, /„, q^, W, q^, 4> • • 4>

q^, /g, /„) (fig. 6) is evidently less than the required

area, while the area of the figure {p^, q^,, Vi, q^, v^, q^,

. . . Vio, pio, pff) (fig. 7) is greater than the required

area.

Let Aj stand for the area of the rectilinear figure

Fig:-

7

shown in fig. 6, and Ag for that shown in fig. 7.

Then, if A stands for the true area required, A is

greater than Aj and less than Aj, i.e. A lies between
Ai and Ag.

This fact may be written

Ai < A < A2

where < is the sign for " is less than ".

The error in taking Aj as the required area does
not exceed

|(
^ r—-) X 100 i percent.
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Now comes the important point of the method.
By making the steps p^pr, Pipi, p^p^, &c., small
enough, we can make A^ and Ag differ by as little as

we please, i.e. we can make the ewor as small as we
please.

This statement will be considered more fully in the

sequel. Meantime the student may easily verify that

in figs. 6 and 7 the difference Ag — A^ is the sum of

10 rectangles, such as hq^^q,^, which have a common
breadth a/io.* The sum of the areas of these 10 rect-

angles is the product of their common breadth by the

sum of their heights. Thus Ag — A^ = ^ab. By
taking more divisions, the factor corresponding to

yV can be made as small as we please.

We will now consider a convenient notation for

expressing the areas of the rectilinear figures shown
in figs. 6 and 7. Consider any point P (fig. 7)

lying on the curve AC.
The area of the strip q^p^p^v^ is {p^q^ X {pspe)'

lipsq^ and psps are measured in inches, the product is

the area in square inches of the rectangle in question.

Let the co-ordinates of P be (x, y).

When the breadth of the strip (pspg) is small

enough for our purpose, we will call it the " difference

in X " and write it Sx.

Compare Vi which stands for "square root of". Neither 5 nor V
stands for a number, and so Sx no more means S X x than -y/x means

V X *• Sx is simply the symbol for the width of the strips measured

in the x direction, it being understood that 5^ is small enough to en-

sure that the difference in A2 and Ai is small enough for our purpose.

y Stands for the length p^q^, and Sx for the breadth

Pipe, .: area of strip = y x Sx = ySx.

Now, by construction, the width of each strip is the

* a = 0/10 = semi-major axis,

b = Oyo = semi-minor axis.
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same, therefore Sx stands for the width of each and

every strip.

If jVi is the ordinate of g^,

jVa M n 92, and so on,

the whole area Aj is evidently the sum

(yoSx +yiSx +y2^x + . . .jiSx).

The co-ordinates of q„ are (o, .^o)-

9i 1, {Sx, jVi).

92 ., i^Sx, jj/2).

„ „ 99 „ (9SX, jKg).

The sum required is therefore obtained by (i)

making P progress in steps, Sx, from x = o to x = a;

(2) taking the corresponding value of the ordinate to

the curve at the beginning of each step in x, beginning

with X = o; and (3) multiplying Sx by each of these

ordinates and summing up the products so obtained.

This sum is written briefly

i:°'ySx

where S stands for the words "the sum of terms of

type", and o and a indicate the bounds of x between

which the sum is to be taken.

We have seen that when the steps are made small

enough, the error in taking Ag as the required area

can be made practically to disappear. In this case, the

area A^ is indistinguishable from the area required, A.
When Sx is so reduced, a special symbol—an old-

fashioned "s" (S)— is used instead of the usual

2 (sigma) and d instead of S, and we write

I ydx.
Jo
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The mathematical expression

ydx

17

/:

stands for the area OAC (fig. 7) when y and x are

connected by an equation of which the curve AC is

the graph. One method of calculating the value of

ydx, approximately, is to divide the area up into

strips as shown in figs. 6 and 7; sum the areas of these

strips; and repeat the process, using smaller and
smaller strips, until the inscribed (A^, fig. 6) and

Fig. 8

escribed (Ag, fig. 7) rectilinear figures differ by a

sufficiently small amount. This method is an easy

and useful, though tedious, way of arriving at the

required area, within known limits of error. The last

words are important. An approximate result may be

all that is required, if we know its limits of error.
ra

The problem of finding the value of I ydx accurately
J

is the task of the integral calculus.

On the other hand, the differential calculus is con-

cerned with problems like the following one.

Consider the curve OP (fig. 8). Let A stand for

the area O/P.
( B 102 ) 3
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Suppose we divide Op into a large number of equal

parts. These parts need not be inches. They can

be millionths of inches theoretically, and in actual

drawing it is easy to make them ^ in. Let Op
increase by one part, i.e. hy pq. The area added is

If we write AA for the increase in area,

and Aic ,, ,, x,

we get.AA = pV x Ax, nearly.

AA
I.e.

-J—
= pP = _y, nearly (lo)

.'. the ordinate at P is nearly equal to the rate at

which the area increases with x in the neighbourhood

of P, and by making pq progressively smaller and

smaller, v-r-j usually becomes progressively nearer

and nearer to y in value.

We have, then, to examine in detail the approximate

equation
AA , , ,^ = ^, nearly (ii)

This problem is the role of the Differential Calculus.



CHAPTER I

General Principles

"Observe always that everything is the result of a chang-e, and get

used to thinking that there is nothing Nature loves so well as to

change existing forms and to make new ones like them."

—

Marcus
AURELIUS.

Concrete Number—Quantity.

A child sees some apples on a plate, and begins to

wonder whether there are enough to go round. The
question, ^^ How many apples are there?" arises at

once, because the answer is of much interest to him.

His interest does not arise from any theoretical im-

portance he attaches to the idea of quantity in itself

—

it is purely practical. He soon learns to count, and
finds that if there are 4 apples and 4 people, he may
get one, but if there are 2 apples and 4 people, the

position is not so satisfactory. He thus comes to

associate numbers with groups of things. When he
does this, he is beginning to apply mathematics to

practical problems. In all practical applications of

mathematics, whether by the child or the skilled

mathematician, the numbers used refer to definite

quantities of a thing of some kind. They are con-

crete numbers or numerical quantities. The "thing"
need not be a material thing in the sense that it can

be weighed, though it may be. The quantity is always

measured in terms of a "unit", and the number
associated with the unit is the measure of the quantity

in terms of the unit employed.
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Suppose we are considering the length of the

straight line AB (fig. i).

If we use centimetres, the length will be represented

by 6—if we use inches, by 2-36, and so on. The
length can therefore be represented by any number,

depending on the " unit" length we use.

To the purely arithmetical question, "What re-

sults when 3 is multiplied by 2?" the answer is 6;

but to the question, '

' What is the area of a rec-

tangular field whose sides are 3 and 2?" no answer

can be given until we know the "unit", in terms

Fig. I

of which the sides are measured. If they are

measured in furlongs, the answer is 3 fur. x 2 fur.

or 6 sq. fur.

It is not usually necessary to write after each

figure the unit implied in it, but the unit must,

nevertheless, be carefully kept in mind.

In physical science, the units employed are care-

fully chosen so as to keep calculations as simple as

possible. For instance, although the area of a rec-

tangle is proportional to the product of its length

and its breadth, whatever units of length and of area

are used, the area of a rectangle 3 in. long and 2 in.

wide is represented by 6 only if the unit of area used

is the square inch. If the inch is taken as the unit of

length, the square inch is the natural unit of area.

Abstract Number.

In arithmetic, numbers are sometimes considered

without any reference to particular objects.

3x2 = 6
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expresses a fact concerning the numbers 3, 2, and 6

considered as mere numbers. It is true no matter

what things the numbers refer to.

We must distinguish between:

1. The thing or quality we are measuring;

2. The amount of that thing, i.e. the quantity

of it;

3. The standard amount of the thing—the unit,

i.e. the arbitrary amount we denote by the

number i ; and

4. The number which measures the quantity of

the thing in terms of the chosen unit.

The study of numbers themselves is only of in-

direct interest, since the numbers have only artificial

meanings so long as they are divorced from a unit.

Not till the unit is introduced does the number become

r' p'
.

P R

o

Fig-. 2

a definite quantity standing for the amount of a thing.

It is just as easy to be specific as to what the unit

is, and, unless the contrary is stated, we shall sup-

pose the unit is a given length, i in., say, of a

straight line. Any number, therefore, represents a

straight line, i.e. a quantity of length. For instance,

if we measure from a starting-point at O, to the right

(fig. 2), OP is the quantity represented by 3 if OP
is 3 in. long.

Similarly, OP' is the quantity represented by —3 if

it is 3 in. long and measured in the opposite direction

to that of OP.
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Every point, R, R', &c., in the straight line R'OR,
when extended indefinitely in each direction, is the

end of a straight line, the beginning of which is at O,

and this straight line is a quantity of length corre-

sponding to some number of units of length. Thus:

if OR is X in. long,

OR corresponds to the number x.

The straight line R'OR is therefore, as it were,

a picture of all the numbers, as any point in it corre-

sponds to some number.
The reader will recall that the whole theory of

dimensions in physics is based on the essential differ-

ence between "quantity", or the amount of a thing,

and the mere number that measures this amount in

terms of the chosen unit. The mere number has no
dimensions; the quantity has physical dimensions

which are the same as those of the unit chosen.*

Change.
"All the world 's a stage,

And all the men and women, merely players;"

said Jaques. Some people play dumb parts that they
may watch the heroes and the heroines the better

—

but play some part they must in the ever-changing
scenes of the pageant of life and of nature.

Change is everywhere— stagnation is anathema.
Change seems to be the stimulus that' awakens con-
sciousness. The child notices the changing colours
on the wall, the moving leaves on the trees, and
remembers them. The idea of change or variation is

a fundamental one, and is derived from our experience

* For a full explanation of this theory, see the chapter on Dimensions
in any standard work on physics, e.g. Deschanel, Electricity and
Magnetism, pp. 346-50.
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of things from earliest infancy. If a thing which is

being measured changes, the quantity of it must
change too.

The idea of variable quantity therefore arises. It

arises directly from our fundamental idea of change.

On the other hand, there are certain things which

we are led to believe do not change. The quantity

of anything which does not change must remain

constant, and will be represented in any given system

of units by a definite unchanging number such as

2 or 3.

Variable Quantities—Functions.

In elementary mechanics, it is shown that, if a

stone falls freely to the earth under the influence of

gravity, the distance through which it falls in a given

interval is given by

s = hS^i' (I)

where i' stands for the vertical distance fallen

through, in feet;

g stands for the acceleration due to gravity,

in feet per second per second ; and

i stands for the period of flight, in seconds.

The acceleration due to gravity does not change,

appreciably ; hence it will be measured by a constant

number, which is 32 nearly, in the unit stated. So
(i) becomes

s = y'-t^

= i6t^ (2)

A stone may fall for a longer or a shorter period,

and may, in consequence, travel a longer or a shorter
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journey. The values of i' and t in (2) are therefore

not unalterable numbers.

For instance, \i t = i, s = 16, i.e. the stone falls

through 16 ft. in i sec.

If i is put equal to 2, we find j = 16 x 2^ = 64,

i.e. the stone falls through 64 ft. in 2 sec.

So we can go on putting any positive number for /,

and calculating the corresponding value of s. We
can plot a graph of the results.

Quantities such as those denoted by J and t in (i)

are termed variable quantities, while quantities, such

as the acceleration due to gravity, which are essen-

tially invariable, are called constant quantities.

It is usual to use the later letters of the alphabet,

X, y, z, to stand for variable quantities, and the

initial ones, a, b, c, &c., for constant quantities.

When two quantities are related to each other, so

that changes in the value of one are accompanied by
changes in the value of the other, each is said to be

a function of the other.

The value of s, in the example, depends on the

value given to t, while if s be given, the correspond-

ing value of / depends on the particular value given

to J. In fact the graph shows the correspondence

which exists between the values of j and t. s is

therefore a function of t, while ^ is a function

of J.

This functional dependence is written

^ = /w
or ^ = '^{s),

where/, \p- stand for "a function of".

In this notation, f{a) stands for the value of the

function f{x) when a is put for x; thus '\i f(t) is iSf^,

f{a) is i6a^.
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To take another example, suppose

y = -^y? + 2X + 2.

As y has different values, depending on the par-

ticular value given to x, we speak of y as being a

function of x, and we symbolize the relationship thus:

y = <^{x\

and on putting a for x,

<p{a) = 3fl^ + 2fl + 2;

or, on putting 2 for x,

0(2) = (3 X 2^) + (2 X 2) + 2 = 18.

Different functional symbols,/, i/r, 0, &c., are used

to distinguish functions of differentform; thus:

if J = i6ifS

^ " 76' _

and i? = + ^,
4

we can write

J = f(,t) = i6t^ regarding i' as a function of t,

or i = i/r(j) = -— „ t „ s.

4

Here / and yj/^ stand for functions of different form

;

if a be any variable, /(a) is i6a^, while

Vr(a) is ^.

EXAMPLES

1. If '/'(x) = x^, what is the value of ^(2)?

2. If iti(x) = ar^ + 3. what is the value of 0(6)?

3. If x(x) = ** + 40, what is the value of x(i)?

4. If /(x) = x^-\- 2x^ + 3^+1. what is the value of/(o)?
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Approximation.

A measurement is never quite accurate unless by

accident; it is usually sufficient if it is approximately

correct. Sometimes, indeed, an approximate measure-

ment is all that is possible; for example, it would

be difficult even to define exactly what is meant by

the length of a given iron rod. How accurate the

measurement should be depends on the purpose

for which it is required. For example, suppose a

pair of scales is made to turn when the weight on

one side is y^ oz. greater than the weight on the

other. If an ounce of tea is weighed on such a

pair of scales, the quantity of tea should be correct

to within y^ oz., i.e. to within i part in loo. In the

same way, i lb. could be weighed with an error

not exceeding y^ oz. in i6 oz., i.e. to within i

part in 1600. On the other hand, if such a pair of

scales were used to weigh -^ oz., the weight could be

relied upon only to within i part in 2, and could make
no pretence to accuracy. While an inaccuracy of

1^ oz. is negligible for relatively large amounts, it is

of serious consequence when the amounts are relatively

small. It is often difficult, and sometimes impossible,

to calculate the absolutely accurate value ofa number,
though an approximate value may be easily obtained.

People have been trying to find the accurate ratio of

the circumference to the diameter of a circle for about
four thousand years. It was not till quite recently

that mathematicians succeeded in showing that this

could not be done. For many purposes, the result

(3- 1604) obtained 3600 years ago was accurate enough,
and a result less accurate but within about 5 per cent

of the value accepted to-day (31416) is implied in the

Old Testament (i Kings, vii, 23):



GENERAL PRINCIPLES 27

"And he made a molten sea, ten cubits from the one brim to

the other : it was round all about, and his height was five cubits;

and a line of thirty cubits did compass it round about."

For many purposes an approximate number is all

that is wanted, and the accurate number, even if we
had it, would be of no more use than the approximate

one.

Further, we can often find out hoiio near the approxi-

mate figure is to the accurate one, and can, if we wish,

make the approximation progressively nearer and
nearer to the accurate number—but this makes the

calculation longer. The nature of the problem usually

indicates how close the approximation should be.

We will examine in some detail how the limits of

accuracy may be set.

Units—Large and Small Quantities.

In all applications of -mathematics, it is of the

utmost importance to select with care the unit we use,

and to be perfectly clear what it is. A mere number
is of little interest, as it only stands for an abstract

idea until a unit is attached to it. When that has

been done, it stands for something specific. We
choose the unit from the following considerations.

I. In measuring the different quantities, we try to

use the same range of numbers as we use in the

affairs of everyday life. By doing this we can form

a better mental picture of the quantities. The unit

settles the scale of the numerical picture. For in-

stance, it is difficult to form a clear idea of the size

of a field said to be 16,187,425,688 sq. mm. It is

much better to say it is 4 ac. We know what a
piece of ground the size of an acre is like, and we
can picture what 4 ac. would be like.
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2. It saves much trouble in long calculations to

write numbers consisting of few figures.

3. We try to keep the arithmetic as simple as

possible (see p. 20).

The thing to which our numbers refer being

given, and the unit chosen, our numbers have become
definite, and our sense of proportion tells us which

numbers are large and which small. We shall work
out an example suggested by Portia's speech in the

Trial Scene, where she checkmates Shylock. Portia

lays down with full mathematical rigour the condi-

tions under which Shylock can have his bond. It

will be instructive to consider the passage almost

word for word, as it will bring out some of the most
important ideas of higher mathematics.

Portia. Therefore prepare thee to cut off the flesh,

Shed thou no blood, nor cut thou less nor more
But just a pound of flesh : if thou tak'st more
Or less than a just pound, be it but so much
As makes it light or heavy in the substance.

Or the division of the twentieth part

Of one poor scruple, nay if the scale do turn
But in the estimation of a hair,

Thou diest, and all thy goods are confiscate.

Shylock is to have a quantity of flesh, so the thing
we are talking about is "flesh".

In the bond, a mathematically exact amount of flesh

is specified. '
' The words expressly are ' a pound of

flesh'," Portia has just told the Court. She repeats

it here

—

"fust a pound of flesh ".

We will take the pound as our "unit". The
number which measures the amount of flesh Shylock
is entitled to, in terms of this unit, is i.

Now Portia sets the Jew the pretty problem of
cutting off one pound of flesh, and incidentally of
doing it without shedding blood. Apart from the
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difficulties of bloodless surgery, the first condition is

hard enough to fulfil. She sees that Shylock probably

cannot cut off "just a pound", and that what he

actually cuts off may be more or less than one pound,

and she gives him a margin to work on.

Bearing in mind the claims the Jew has made, her

sense of the fitness of things leads her to set up two

arbitrary standards of approximation or tolerance. If

the difference in the weight of the flesh actually cut by
the Jew and the amount he is entitled to cut does not

exceed these standards, she will overlook the error in

cutting and consider the Jew to have fulfilled this part

of the conditions; in other words, she will regard

the difference as of no importance and one which can

be ignored.

The amount actually cut may be " less or more ", so

that if X stands for the actual amount cut in pounds,

{x — i) will be positive if the Jew cuts more and
negative if less. We are only concerned with the

difference—we do not mind whether it is one way
or the other, i.e. we take

{x — i) when x > i,

or (i — x) when ^ < i,

and write {x ~ i) for the difference taken positively.

The same thing is also often written

Take the first standard set—an amount of flesh

weighing " the twentieth part of one poor scruple".

This amount is r-mis lb. If then x stands for the

actual weight of flesh cut, in pounds, the difference

between x and i, taken positively, must be less than
1

The conditions can be written

(^ ~ i) < T^ (3)
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If X satisfies (3), Shylock wins ; if not, Portia wins.

But the second test is more severe and less specific

—" tlie estimation of a hair ". Hairs vary in weight,

but, to give the Jew the benefit, we will take a good

long fat hair weighing say j^th part of a grain.

This is xVth part of the first standard, so our condition

runs

(^ ~ i) < y^fijTnr (4)

The Jew cannot hope to cut so exactly as this

standard requires. He might be sure of his skill to

I oz., but to " the estimation of a hair " is out of the

question. In other words, the degree of accuracy

asked for is higher than the degree practically attain-

able.

The allowable errors assigned by Portia were both

"small", the second, of course, being smaller than

the first. We mean by this that a piece of flesh

weighing only tttw^ lb. is small enough, in the cir-

cumstances, to be ignored, and we regard txt^^jt lb.

as a small quantity of flesh.

When we describe a quantity as "small " we mean
that it is small enough for some purpose we are

thinking of ; not that it is necessarily small in itself.

Portia's purpose was to set limits to the margin
allowed to the Jew, and she decided that -ruh^js lb.

was, under the circumstances, small enough to be

ignored.

Similarly, if we were measuring lines with a micro-

scope we might say that a length ^ in. was large—
meaning that it is large enough to be measured
without a microscope.

Again, consider a length j-ott in. The area repre-

sented by its square is y^^ sq. in., the volume
represented by its cube, lOooo Tny c. in., and so on,
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and if we say that ^^ in. is "small" we may mean
that it is small enough to permit of the quantities

represented by its powers, (T5^r)^ (tw)*> &c., being

neglected in our calculations. We shall see an

example of this use of "small" later—it is the most

common use of the word in this subject.

We can regard the quantity x as small when

\X\ < K,

where k is some specially chosen positive quantity

which we decide to regard as our standard of small-

ness, or as our standard of approximation.

Small Quantities.

Consider the finite geometrical series

I +r+r2+ . . . +^-"-1, (5)

where r is a positive fraction and n a positive integer.

We will suppose r is ^V and n is 10, so that the

series is

^9"
lo 100 10"

The series has 10 terms, the last of which is —a-
10"

The second term is -fV of the first, and, for some
purposes, the second term may measure a quantity,

small relative to that measured by the first term,

unity.

The third term is then small relative to the second,

since it is -^ of the second, and is as small relatively

to the second as the second is relatively to the first.

It is, however, far smaller relatively to the first

than to the second, because it involves the square of

the "small quantity", yV-
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We may call it a small quantity of the second order.

Similarly, the fourth term, T^?y, involves the cube of

the small quantity, -^, and is called a small quantity

of the third order, and so on for the remaining terms.

Our series, then, goes up to a small quantity of the

ninth order. In the series (5) if r is " small " relative

to unity,

r is called a small quantity of the ist order,

r' ,, ,, ,, 2ncl ,,

' M »» >» 3™ >>

and so on. Whether r w " small " compared to unity

B- 0^

10"

10"-

Fig-

3

D^E

or not is a question which depends on the particular

application we are considering.

The importance of this idea of " orders of small-

ness " will be seen from an example. Consider the

expansion of a square plate of iron by heat.

Let the side of the square plate measure 10 in.

at 0° C.

At 10° C. its sides measure 1000123 in. (fig. 3).

The area of the plate at 10° C. can be very simply
calculated with accuracy. It is

(io-ooi23)^ = 100-0246015129 sq. in.
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For most purposes, we do not need as many as

13 significant figures in the calculation. It may be

sufficient to be correct to say 7 significant figures.

The area of the expanded plate, correct to 7 signifi-

cant figures, can be calculated by the following method,

which depends on the use of "small quantities",

thus:

In fig. 3, the area of the expanded plate is AGFE.
The original area is ABCD, hence

area AGFE
= area ABCD + 2 (area CKED) + area HFKC,

i.e. area AGFE
== [10^ + 2(10 X 0-00123) + (0-00123)^] sq. in.

= [100 + 20 X 0-00123 + (0-00123)^] sq. in.

= [100 + 0-0246 + O-000001513] sq. in.

We have thus expressed the area of the expanded
plate as the sum of a series of three terms.

The second term depends on 0-00123, and the third

term on (0-00123)^ 0.00123 is about ^Trltnrth part

of the first term, 100, and may legitimately be re-

garded as "small", relatively.

The second term is therefore a small quantity of the

first order, as it depends on the first power of the

small quantity (0-00123); while the third term is

a small quantity of the second order. It is evident

that the third term can be neglected in calculating the

area of the expanded plate to 7 significant figures,

for 7 significant figures take us only to the fourth

decimal place, and the third term contributes nothing

before the sixth place of decimals. It arises from the

little square HFKC, and is TTB^innnrTrTTth part of the

first term.

The area of the expanded plate can therefore be
(D102) 4
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obtained as accurately as need be by rejecting the

term of the second order of smallness, and retaining

only the term of the first order.

The result is 1000246 sq. in.

Provided the small quantity of the lowest order

which we retain is small enough, we can neglect all

the small quantities of higher order which occur.

To put this calculation into the language of in-

equalities :

We wished to calculate the area correct to 7 sig-

nificant figures. The area must be greater than

100 sq. in. and less than 121 sq. in., hence 7 signifi-

cant figures take us to four places of decimals.

We can therefore neglect areas less than Tmnnnr

sq. in.

The true area is

[100 + 0-0246 + (o-ooi23)^] sq. in.

The approximate area, obtained by rejecting the

last term, is 100-0246 sq. in.

The numerical difference in these areas is

(0-00123)^ sq. in.

Now (0-00123)2 < T^rsW-

.". (0-00123)^ can be neglected in calculating the

area.

We cannot neglect the area corresponding to the

small quantity of the first order, as this area is

20 X 0-00123 = 0-0246 sq. in.,

and
0-0246 is not less than x^^nnnr-

If we were satisfied with 4 significant figures, we
could neglect this term as well as the second, as 4
significant figures require only one decimal place,
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and hence we could neglect areas less than ^wu sq. in.,

and
{0-0246 + (0-00123)2} < if^.

In this case the expansion would not affect the area

of the square plate by amounts within the degree of

accuracy required.

Expansion of a Cube.

Small quantities of the third order arise in the

problem of the expansion of a cube. Suppose the

Fig. 4

side of the cube measures 10 in. at 0° C. At 10° C. its

side measures 10-00123 in. Fig. 4 illustrates this case.

The volume of the expanded cube is

(10-00123)^ = 1000-369045388860867 c. in.;
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but we do not need 19 significant figures for any

practical purpose: 7 figures will be quite enough, as

in the case of the square.

The expanded cube is got from the original one by
making certain additions

:

1. A slab like CDGFKJML (fig. 4) is placed on

each of the three faces of the cube ABCD, CDGF,
and ADGH.
The size of each of these slabs in cubic inches is

10^ X 000123 = 0123.

The three slabs therefore contribute

3 X 0-123 = 0369 c. in,

2. Three small prisms such as DPONARST will

be required to fill up the corners left at the ends of

the slabs.

The size of each of these in cubic inches is

0-00123^ X 10 = 0-000015129.

The three contribute

3 X 0-000015129 = 0-000045387 c. in.

3. A tiny cube will be required to fill up the corner

at Q. The size of this cube is

(0-00123)' = 0-000000001860867 c. in.

The whole growth is the sum of these items, and the

volume (V) of the expanded cube is the original volume
plus these growths, i.e., in cubic inches,

V = [1000 4- (3 X lo^ X 0-00123)

+ {3 X 10 X (0-00123)2} 4- (0-00123)8]

= [1000 4- 0-369 4- 0-000045387

4- 0-000000001860867].

The second term depends on 0-00123, the third on
(0-001^3)2, and the fourth on (0-00123)^
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We can consider 0-00123 a small quantity just as in

the case of the square. The second term is therefore a

small quantity of ihe first order, the third of the second

order, and the last of the third order. It is evident that

this is the order of importance of the quantities and

the order in which they should be taken to get increas-

ing accuracy. The three slabs (first order terms) con-

tribute most to the growth, the three prisms the next

amount, while the little cube contributes the least.

We need only retain the first order term to get the

7 significant figures we need, i.e.

1000-369 c. in. is the desired result.

Note how rapidly the terms of higher order of small-

ness decrease in importance.

The Changes in the Values of Functions.

Suppose jj/ = f{x).

It is important to find how changes in the value of

X affect the value ofji^.

We may illustrate the general method of dealing

with this question by applying a more symbolic

treatment to the two practical problems just con-

sidered.

(i) Find the increment of area when the sides of

a square metal plate expand by a given amount.

Suppose X stands for the length of'the edge of the

plate, and h for the linear expansion (DE or BG, see

fig. 3), and J)/
for the area of the plate before expansion,

then, if_y' is the area of the expanded plate,

y =^ {x + hf
and {y' — y) = {x + lif — x^

= 2xh + A^ (6)

-•. the increase in area is 2.xh + 1^.
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h.finite increase in x is often written A^. This does

not mean A X a:, but is a single symbol standing for

"a finite increase in " x. Similarly, a finite increase

\ny is written Ly.
In this notation we get

Ajj/ = zxt^x + (A^)2 (7)

This equation gives the information we require, viz.

the increment in the area (_>») arising from a given

linear expansion {Loc) of the side {pc).

The formula has been calculated for an expanding
plate, but it is clear that it is true whatever x and y
may stand for, provided j>/ = x^
The formula gives the increase in x^ when x

increases by Ax, whatever values x and Lx may
have.

WORKED EXAMPLE
Suppose X = <) and t^x = ^, then

Ajc = 2X9X2 + 2" on substituting in (7)

= 36 + 4
= 40.

Check. When ar = 9 x^ = %i

X ^ \\ x'^ = 121

Difif. = 40.

.'. growth in x^ = 40 when x increases from 9 to 11.

The Ratio Ay/Ax, when y = 3^.

\iy stands for the area of the plate in square inches,

and X for the length of the side in inches,

Ay = 2xAx -^ (Ax)2 by (7) (8)

Consider what happens when we cool the plate from
say 10° C, towards the original temperature, 0° C.

The linear expansion becomes smaller and smaller, and
hence Ax becomes smaller and smaller. When the
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rise of temperature is 10° C, Ax is 0-00123; when the

rise is i" C, Ax is 0-000123; when the rise is xinnr" C.,

Ax is 0-000000123; and so on. But there must be

some rise of temperature, otherwise the problem is not

one of the expansion of a warmed plate at all. Hence
the value, zero, of Ax does not interest us.

We will suppose that Ax can be as small as we like,

but not zero. When Ax is not zero, we can divide

equation (8) by Ax thus

:

-^ = 2X + Ax (9)

Now, by taking Ax small enough, we can bring

2x + Ax as near to 2x as we please.

For instance, {2X + Ax) differs from 2x by less

than I billionth, when Ax < i billionth, and so on.

We express these ideas by saying that the limit ol

(2x + Ax), as Ax approaches zero, is 2X, and we write

Lt {2X + Ax) = 2X.
Ax —^

The symbol —> reads ^^ approaches".

Reverting now to (9), we get

Lt (-r=^) = Lt (2.x -\- Ax) = 2X. ...(\o)

The fraction Ay\Ax therefore tends to the limit 2X,

as Ax approaches zero.

The limiting value of Ay/Ax as Ax -> o is denoted

The symbol -5- does not mean d -f- dx, and is not

a symbol for a number at all. It is a symbol standing

for an operation, which, when applied to y, is the

^^(^)
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operation of taking the limit of the ratio of Ajv to Ax,

when A^ —> o, so that

(£> -^nm (>

And if^ = x^

{i)y = ^^ ('">

The symbol -r- may be compared with ^. This

sign is a symbol of operation. \/x does not mean

y/ X X, but it means the result of the operation of

extracting the square root of x.

\-f-)y
is usually printed -^ for convenience, but

when it occurs in this form, it must not be mistaken

for a fraction {dy -f dx).

Summarizing the notation, we have

(^V = i =^t^o(^) ^'^^

or, putting f{x) for y \{ y = f{x),

a)/« =^ -„!i.(^') (->
\dx.

It is important that the reader should see clearly the necessity

for this treatment by Hmiting values.

For instance, it mij^ht be asked, why not put Ar = o in the

equation

-^ = 2X 4- A;r,
Ax

and get -^ = 2X and avoid using the idea of the limit?

The answer is that Ax cannot be both something and nothing

;

it must be something or nothing.

If it is nothing, there is no change in x, so AyjAx is meaning-
less ; in fact, the fraction cannot arise.
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It therefore must be something', but it can approach zero as

nearly as we lilie. This possibility suggests our trying to find

a number I such that

^-> I

as t^x —> o.

This number I, if we can find it, is called a limit, and we
express the fact that the limit I exists (if it does) by writing

Lt {^)=l = f (IS)
AX —>

as a matter of notation.

(2) The symbolic treatment of the second of the

two practical problems, viz. to find the volumetric ex-

pansion of a metal cube due to a given expansion of

the side, will serve to emphasize the foregoing funda-

mental principles.

Let X stand for the length of the edge of the cube
in inches, andjv for the volume in cubic inches.

Let A^ stand for the expansion of the side in

inches.

Then, \iy is the volume of the expanded cube,

y = {x-ir ^xf.
.'. y' —y = (x -\- i^xf — X?.

:. Ly = 3x^Ax + 3x(Axf + (Axf (16)

This equation gives us the result required, viz.

the volumetric expansion in terms of the linear ex-

pansion.

EXAMPLES
1. The side of a cube of brass expands from 12 in. at 0° C. to

12(1 4" o-oooiSf) in. at 10° C. Calculate the increase in its

volume, and the ratio of increase in volume to increase in length of
side. Work to 4. significantfigures.

2. Find the change in the value ofy (= x^) when x changesfrom

g to II, and check the result given by the formula (16) by a direct

calculation.
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To find dyjdx when y = jr'.

We have by (i6)

Ay = sx'-Ax + 3x{Axf + (Axf (17)

.-. ^ = 3x^ + 3x (Ax) + (Axf.
Ax

i^ = Lt f^),dx ^ _). oVAjc/

hence we require the limit of —^ as Ax —> o.
Ax

3x{Ax) may be made as small as we please by

taking Ax small enough.

.". 3x(Ax) —> o as (Ax) —* o.

Similarly, (A^)^ —> o as (Ax) —> o.

.'• (3^^ + 3xAx + (AxY) —> 2^^ as Aa; —> o;

''•f =„tl.(^) = 3''- <«>

when ^ = ^.

To find 3- (a:"); « a positive integer.
ax

We have seen, on p. 40, that, iiy = f{x),

dy ^ dfjx) ^ ^^ (
Af(x)\

dx dx A* —> o\ Ax /

and for two particular functions of x, viz. x^ and x^,

we have found the respective limiting values to be

2X -and 3^^. That is

-J-
= ix when y = x'-,

(toe

and -f- = 3x^ when y = x*.
dx
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We will now proceed to find the value of

^ when y = x",
dx -^

n being a positive integer. The algebra will be a

little long, and it will shorten the expressions to write

A, instead of A^, for the increase in x.

Multiply

a^ + fli + 6^ by fl — b. Result a^ — b^;

a^ + a^b + ab'^ + b^ hy a - b. Result a* - d*.

In general,

{a - b) («"-! + a"-2|& + a»-3^,2 + . . . + 6»-i)

= a" - *" (19)

This identity can be easily proved by direct multi-

plication.

It is true for all values of a and*^.

Rewrite it

"" ~ r = «"-^ + a^'-^b + a^-W + . . . + 6"-i
(20)

a —

There are n terms on the right-hand side.

Put a = X + h and b = x.

Then a — b — h,

and a^ -b^ = {x ^- A)", - 0^.

. g" - ^>" _ (^ + /)" - ;c"

a — b h (21)

Substituting a = x + A and ^ = x in the right-

hand side of (20) we get

(x + lif-^ + (x + hy^-'^x 4- (x + /i)"-^^^

-I- . . . + x»-i.

Now, (x + A)" — x" is the increase which takes
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place in y when the independent variable x changes

by the amount h, i.e. by ^x. Therefore

Ay _ r{x + hy - x'' ~[

Ai ~ L h J"

The limiting value of this expression, as A —>• o, is

by definition, the value of ^(^")- The limiting

value we require can be easily found.

When A -> o, {x + A)»-i -^
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Exercise 1

I. Draw a circle of radius 2J in. Divide a diameter

AB into 10 equal parts, and draw lines through the points

of division, cutting the circumference of the circle and

perpendicular to the diameter chosen. By the method

shown on pages 13, 14, find upper and lower limits for the

area of the circle, and express the difference in these limits

as a percentage of the lower limit.

2. Repeat (i), dividing AB into 20 equal parts. Notice

that by making the strips half as wide as in (i), the area

is determined within much closer limits. Find these limits,

and compare them with the true area, calculated from -ky^.

3. \l y = jc^, calculate the increase in y corresponding

to an increase Ajc in x, when a; = 6, and also the value of

-T^. Calculate the values of Ay and —=?- when Ax = 0.1

o-oi, O'Ooi, &c., and fill in the blank spaces in the table

below, to show the way in which -^ approaches its limit-

ing value 12, as Ax approaches zero.

^x
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6. Differentiate

:

(i) y = x^.

(ii) j> = x^.

(iii) y = x^'^.

7. A square plate of brass is expanding by heat. When
the length of its side is 7 in. it increases by -002 in. in a

second. Give an approximate value for the corresponding

rate of increase in the area of the plate.



CHAPTER II

Geometrical and Mechanical Meaning

of a Derivative

"Nothing' can be more fatal to progress than a too confident

reliance on mathematical symbols j for the student is only too apt

to take the easier course, and consider the formula and not the fact

as the physical reality."

—

Kelvin and Tait {Natural Philosophy).

In Chapter I, we found that \i y = f{x), we are

sometimes able to find a limit / to which the fraction

-r=^ tends in value as Aa; approaches zero. We ex-

press this by writing

Lt m = 1 = %
lix _> o^Ax/ ax

This limit we called the derivative oif{x).

In this chapter we shall try to find out the physical

significance of this limti.

Gradient or Slope ot a Straight Line.

Let O'P, fig. I, be any straight line, and let O^,
Oy be any pair of rectangular axes. Choose any
point P in this line, and let {x, y) be the co-ordinates

of P.

Then OM = x and MP = y.

Let the straight line intersect the Oy axis in the

point O' whose co-ordinates are (o, c).

Through P draw MP parallel to Oy, and through



48 APPLIED CALCULUS

O' draw O'N parallel to Ox, N being the point of

intersection of this line with MP.
Then the ratio of NP : O'N is called the gradient

of the line O'P. If we suppose Ox to be a horizontal
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Putting m for tana,

y = ntx + c, where tn and c are constants, (i)

This is the equation of a straight line, and it is an

equation of the first degree in x andjv.

This equation can be easily transferred into any
other form in which a linear equation may be written,

thus:

y = mx + c.

Multiply by B throughout, then

Bj/ = 'Qnix + Be.

Put ( — A) for the constant Bm, and —C for Be,

and we get
By = - A.X - C.

i.e. Ax +By -[ C = o.

Although Ax + By + C = o appears to have three independent

constants, it really only has two, as we can reduce the coefficient

of y to unity by dividing the equation by B,

Parallel Straight Lines.

Parallel straight lines are those having the same
gradient, i.e. the same m, hence if

y = mx + c represents a given straight line,

y — mx + c' ,, a parallel straight line,

where c and c' are different numbers.

When the straight line is parallel to Ox, its equa-

tion becomes
y = c,

for m = tana = tan 0° = o,

and when parallel to Oy, the equation is

X = d.

In these equations c and d are constants.
(D102) 5
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WORKED EXAMPLE

Find the equation of a straight line passing through the points

(—3. 4) ""'^ (2. — i)-

Let the equation be

y = mx + c.

Then, substituting the given values of the co-ordinales of the two
given points for x andjc, we get

4 = — 3'« + c

and — I = 2m + c.

Subtracting, 5 = — c,m.

.'. m = — I,

and c = I

;

tlierefore the equation of the straight line is

y = —x-\- 1,

or X -^y = I.

Geometrical Meaning of ^.
dx

Let AB be a portion of a continuous graph
(fig. 2).

Let_y = <p{x) be the equation to this graph.

Let P be any point (x, y) on the curve, which we
choose at pleasure, and PQ a straight line through P,

cutting the curve at Q.
We will suppose a tangent to be drawn to the

curve AB at any point, P, on AB. Let PT be this

tangent line at P, and let Z.TPR = i/<-, where PR
is parallel to Ox.

Further, suppose PT is not parallel to Oy.
So long as P and Q are distinct points, the line

PQ cuts the curve at P and Q and PQ is not a

tangent; further the angle QPR > i/'-

Let the line QPM rotate about P in the clock-

wise direction, and the line M'PQ' about P in the
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counter-clockwise direction, subject to the restriction

that

Q and Q can approach P as near as desired^ but

must not coincide with P.

It is evident that, as Q and Q' approach P, the

lines QPM and M'PQ' will swing round towards a

Bi

Fig. 2

limiting position, and that this limiting position will

be the tangent line at P, for QPM cannot pass the

tangent position, otherwise Q must become coinci-

dent with P in the process; and, similarly, M'PQ'
cannot pass the tangent position, but the lines QPM
and M'PQ' can lie as near together as we like by
taking Q and Q' sufficiently near to P.
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It is evident therefore that, as Q (or Q') —* P,

and 0' -> V'

where \}r is the indination of the tangent to the Ox
direction ; i.e.

tan0 —> tani/r as Q —> P.

But

tan0 = ^ for tan0 = 58,Ax PR

and RQ is the change in the vakie of^ brought about

by a change PR in the value oi x.

As Q -> P, A;c -> o,

.. -^ —> tani/r as Ax -» o,

i.e. tan\/r is the limiting value of

-r^ as A;k; —> o, at P.
Ax

i.e. [^1 = tanV.

where -r^ is the value of -^^ at P and \I/- is the
LdxJx = op ax ^

angle of inclination of the tangent at P, to the Ox
axis.

On the understanding that both -^ and \/<- are to

be measured at P,

^ = tanypr (2)dx

The reader is advised to draw out fig^. 2 on a large scale ?nd
test, by drawing, the fact that B and 6' —^ ^ as Q and Q' swing
towards P.
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Equation (2) gives us a clear idea of the geometrical

meaning of dyjdx. It is the trigonometrical tangent

of the angle of inclination of the geometrical tangent

at P, to the Ox axis. But this is the gradient of the

curve at P, hence

dy^ d J., .

dx dx-' ^ '

is the measure of the gradient of the curve which
is the graph oi y = f(x) at the point at which it is

calculated.

For example: Let ji/ = x^.

Then -^ = 2X.
dx

At the point x = 10, 2x = 20.

\dx/^ = 10

.•. the slope of the graph ofy = x^ at x = 10 is 20.

i.e. tan i//- = 20 at ^^c = 10.

i.e. i/r = arc tan 20 at :v; = 10.*

i.e. i/f = 87°io'about,atA;=io.

The tangent to the graph of _y = x^ which touches

the curve at the point P[x = 10, y = 100] cuts the

Ox axis at an angle of 87° 10'.

EXAMPLE

Draw the graph ofy = x^ to the scale i in. = i horizontally

{x axis) and i in. = 10 vertically {y axis). Mark the point P
for which x = lo, and therefore y = 100. Draw the tangent at

P as accurately asyou can, and vieasure the angle at which it cuts

Ox, with a protractor. What is this angle? Does it confirm the

preceding calculation?

* This notation—the Continental one—is now becoming common in

Britain instead of the older form tan"' 20.
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The result we obtained in formula (2) is true for all

functions of x the graphs of which are smooth curves,

Fiff- 3

i.e. are curves free from "breaks" or "kinks". Fig. 3
shows what this statement means.

(i) Shows a " break " at jc = a.

(ii) Shows a "kink" at x = a, but no "break".

Obviously neither of these curves has one definite

tangent line at the points A and B, and so there is no
definite i/r, and consequently equation (2) gives no

definite value for ^, hence any function having a

graph like that shown in fig. 3 (i) or (ii) would not

have a single definite derivative at x = a.

Speed.

A train sometimes runs in such a way that it

travels equal distances in equal times. We then

describe it as running at a uniform or constant
speed.

Let V be the number of miles travelled in any one
hour; then, in t hours, the distance travelled is vi
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miles, i.e. if j stands for the distance travelled, in

miles,

•r = vt (3)

It is evident from (3) that when a body moves with

a uniform or constant velocity, the graph of its motion,

Fig-. 4

as a distance-time curve, is a straight line through

the origin. The graph is shown in fig. 4.

Consider any point P (fig. 4) on the graph.

pF = s

op = t,

hence ^ = - = w by equation (3).

^P
But ^ = tani/r, if •\/r is the angle of slope of

^^
the line OP,

hence tani/r = v.

Consider a neighbouring point Q on the graph.

Through Q draw the ordinate Qq, and draw PN
parallel' to Ot, and cutting Qq in N.

Then, NQ = A.r

and PN = M,
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as these lines represent, respectively, the increases of

J- and t under the condition of constant speed.

Now, g§ = tanQPN

= tani/f

= V.

Ac
:, — = V = the constant velocity,

no matter over what interval {Lt) the increase (Aj)

in J is taken.

^^ "'
tani/r = — by equation (2).

. ds . .

• • -^ = z), a constant,

= the velocity of the train.

In the case of constant speed, we have then

V, the constant speed, — jr}— Yt~ 1
~

^^"V'- (4)

These different ways of expressing the velocity

arise from the fact that it is constant, and the graph

of distance-time, a straight line.

Variable Speed.

It is a fact of everyday life that the speed of a train

is not constant, but variable. This is the very kind

of obstacle the calculus was invented to overcome.

Here, the distances travelled in equal intervals of

time are not equal.

Motion in a Straight Line with Variable Velocity.

Suppose a train moves in a straight line from O to

P (fig. 5) in t hours where OP corresponds to i' miles.
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If the point moved with uniform velocity v m.p.h.

we should have s = vt or v = ~ ml./hr. This is

s miles _
in t hours

Fig. 5

the average velocity of the point during the i hours

of its motion from O to P.

Definition of Average Velocity.

The average velocity of a point during any interval

of time is that uniform velocity with which the point

would describe the distance travelled in the same
time.

Instantaneous Velocity.

Suppose the graph of distance-time is not a straight

line, but is as shown in fig. 6.
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Consider the graph from t = o to ^ = Os.

At the end of t hours, the train has moved a

distance j miles; thus if P corresponds to (j, t)y

Op = if and /P = J.

At the end of time (/ + A^) hours, the train has

moved a distance {s + Aj) miles from the start, i.e. if

Q represents this state of things,

O^- = t + ii.t and qQ = s + As.

Join P, Q by the straight line PQ. If the actual

motion between / and t + Lt were represented by this

straight line PQ, it would be a motion at uniform

speed.

Draw PN parallel to O^ to meet the Q ordinate at

N. Then the uniform speed corresponding to the

straight line PQ is

NQ ^ A£
;

PN At

This (uniform) speed, in miles per hour, is the aver-

age speed between t and (/ + At).
\

But As .^a
' At = *^"^'

where 6 is inclination of chord PQ to the O^ direction,

hence tan0 is the average speed over the interval

At at P.

We know that, if

As-— —» a limit as At -* o.
At

this limit is tani/r, where t/t is the angle of slope of

the tangent at P, see equation (2).

If we assume that a tangent to the curve can be
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drawn at any and every point— and it certainly

appears as if it could—then As/At approaches a limit

at each point, and this limit is tan i//-, so that

-j-, at P, = tani/r, at P.

As
Now, -T-2 is the average speed over the interval of

time from ^ to (/ + At), hence this average speed ap-

ds
proaches a limit, denoted by -r-, as At —> o. This

. . ds .

limit, ^, is called the instantaneous velocity at the

moment in question, since it is the velocity to which
the average velocity over an interval of time (A^) at t

tends, as the interval {At) approaches zero. Briefly,

it is called *^ the velocity at t", and is the velocity the

train possesses at that moment. It will be remem-
bered that an average velocity is necessarily a uniform

one, by definition, and the limiting velocity is merely

the final value, so to speak, of an average velocity,

namely, the average velocity over an interval At at t.

The instantaneous velocity is therefore measured just

as a uniform one is, i.e. if the unit of distance is miles

and of time, hours, the proper unit for the instantane-

ous velocity is miles per hour. It is numerically the

same as the distance the train would travel in the next

hour of its journey if its speed were unaltered.

Definition of Instantaneous Velocity.

The instantaneous velocity at a given moment is

dsjdt, calculated at that moment, or the velocity at

time t is dsjdt at that instant.
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EXAMPLE

Suppose the distance travelled in a given interval is given by

s = t^

where s is in feet, and t in seconds.

Then .„

dt

Hence the velocity at exactly lo sec. from the start {t = o) is

2 X lo = 20 ft. per second, i.e. if the moving body moved for the

next I sec. with its speed unaltered, it would move 20 ft.

The reader is strongly advised to draw, say, a parabola on a large

scale. Take Os say 20 cm. and jS 20 cm., the parabola being

s = i^ t"-.

Divide Os into 10 equal parts. Draw in the ordinates and the

" PQ " straight lines of fig. 6.

Determine — for each strip, and plot out a speed-t\me curve on the

scale Os ^ 20 cm., and a convenient scale for "speed". This curve

will consist of a series of steps.

Repeat the experiment to find how fine the divisions must be in

order that

—

{a) The straight lines "PQ" may be practically indistinguishable

from the curve.

(J) The "steps" in the speed-time curve may practically dis-

appear.

In the preceding discussion, we have tried to show
that one of the properties of a body in uniform motion,

namely, velocity, may be measured, in terms of a

suitable unit, by a definite and constant number; also

that when the motion is not uniform, we can still

regard the body as possessing a definite velocity at

each and every instant, though this velocity varies

from instant to instant. In this discussion, we started

from the only information we had, namely, that the

body moved along, and so was at different dis-

tances from the starting-point at different times.

This information gives a distance-time curve, which,
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if the motion is continuous, must be a smooth
curve.

If we are prepared to take this instantaneous velocity

for granted and also to assume that it is a function of

time, whose graph is smooth, the problem of con-

necting this velocity with distance and time becomes
very easy. In this case we can assume a veloctiy-time

V



62 APPLIED CALCULUS

And As < (v + Av)At for similar reasons.

. . z» < -— < w + Av.

Now when Ai —> o, Af —> o, but v does not change
since it is the definite velocity at the time i, and
though V varies from time to time, it does not vary

at the same instant i, and we are letting A^ change,

not i.

.'. Lt (v + Av) = V,
At —>

and hence

o\Ai/

ds
''•

di = ^' •(5)

ds
where both -^ and v are measured at the same (and

any) point P.

In the figure, v is drawn steadily increasing

with t.

y

Fig. 8

This is not essential. If the curve is as sketched

in fig. 8, we can always take a Q near enough to P
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to ensure that the ordinate steadily increases (or de-

creases) from P to Q.

Extension of the Idea of Speed.

We can extend the idea of speed, and its measure-

ment by a derivative, by using the word "rate" instead

of speed. One thing changes at a constant rate with

respect to another, when equal changes in the one

correspond to equal changes in the other. The
amount of the change in the second thing chosen

is usually a "unit" amount, and therefore is

denoted by unity. The amount of the -change of

the first thing is then so much of it, per unit change

of the second.

Let m be the change in the first thing [Y] which

corresponds to any unit change in the second thing

[X]; then if the change in [X] is X, the corresponding

change in [Y] is mX, i.e. if Y stands for the change
in [Y]

Y = mX,

where m is the " rate " in question.

\iy and j/q are the final and initial measures of the

first thing [Y], and x, x^, of the second [X],

then Y = y - y^,

and X = X — x^.

•*• y -y^ = m{x- Xo).

.•. y = mx — (mxQ — y^
But mx^ — ji/q is a constant, — c, say.

.'. y = mx + c.

This is the equation of a straight line, the gradient

of which is m, and which cuts the Oy axis at (o, c).

We therefore arrive at a very important result,

namely, when one thing changes at a constant
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rate with respect to another, the graph connecting

the related quantities of the two things is a straight

line.

This use of the word " rate " has been current since

the end of the sixteenth century.

" Six score acres after the rate of 21 foote to every pearche of

the sayd acre."

—

Spencer, 1596.

It differs only from "speed" in being more general.

"Rate" includes "speed", but "speed", since it

refers only to distance and time, does not include

" rate ". The equation of any straight line is

y = mx + c, where m and c are

constants,

/. Ay = ml\x.

.: -r^ = m.
Ax

Lt (^) = Lt (m)

. dy
- dx- ^ (^)

since Lt (rri) = m, as m is constant.
Aa; —

But m need not be constant. We deal with a rate

which varies from point to point on the same lines as

a varying speed.

We consider the average rate between x and

{x + Aa;), defining the average rate as the uniform

rate which produces the change in y, corresponding

to the chosen change Ax in x. The average rate, so

defined, is measured by AyjAx, just as the average

speed is measured by As/Ai.

The limit to which AylAx tends, as Ax —> o, is

the rate to which the average rate tends, as the
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interval Ax approaches zero. Hence, if m is this

limit,

dx
m. (7)

and m is called the rate at x.

Definition of Instantaneous Rate.

The rate of change of y with respect to x, at x, is

the value of dyjdx at x.
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the gradient of the graph of y in terms of x,

at the same point.

Whenjj/ is distance (s) and x, time (i), the speed or

velocity at a selected point is the same, numerically,

as the gradient of the distance-time graph at that

point.

For instance, the velocity of a body, whose dis-

tance-time curve is shown in fig. 9, is tani/r at P,

where PT is the tangent line at P and t/«- the angle

of slope.

This result gives a graphical method of finding the

velocity of a train, for instance.

Graphical Method of Finding Velocity.

Suppose fig. 10 is the distance-time curve for a

suburban train.

Fig. 10

To deduce the velocity curve from this curve we
have to select a range of points, Pq, Pi, P2, P3, &c.

;

draw the tangents at Pq, Pi, Pa, &c., and measure the
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respective angles of slope t^qi V'h V^z» ^^' Look up
the tangents of these angles in a table of tangents,

and we get

tam/fQ, tan^i, tam/rg, &c.

These numbers are the velocities at the points

Po, Pi, Pg, &c. A curve of velocity against time

can now be plotted by plotting these values for the

velocity at i^, 4, 4> 4) &c., which are the times corre-

ponding to Pq, Pi, Pj, &c.

It is convenient, though not essential, to make the

intervals of time equal.

Scales.

The velocity is tarn/r, when the scales are unit

scales, i.e. i unit of distance is represented by i in.
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Let fig. II represent a portion of a distance-time

curve drawn to this scale.

Let P be a chosen point on the curve, Q a neigh-

bouring point, and PN parallel to O^.

Then tani/r, where i/r is the angle of slope as actu-

NQ
ally drawn, is the limit of p^ as Q —> P.

But NO = - in.

and PN = — in.
n

NQ _ £« Aj
•• PN ~ m M'

ft A.r
.•. tani/r is the limit of —v-: as Q —»• P, i.e. as

M -> o.

, n ds n
:. tanu' =

r; = — «».
^ m at m

where i/r is the angle of slope of the graph as actually

drawn, and — the factor to correct for the scales

actually used, v is, of course, measured in the unit

corresponding to the units of distance and time used.

This method is not a very good one, in practice, as

it is difficult to draw the tangent lines accurately.

Later on we shall explain a better method, which
depends on having the speed-time curve given instead

of the distance-time curve (p. 109).

We have now obtained two ideas of the nature of

the limit denoted by dyjdx. They are:

I. It is the measure of the gradient of the graph
of jv in terms of x, at the point (x, y).
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2. It is the measure of the rate of change of jj/ with

respect to x, at x.

These two ideas are essentially the same, and are of

great importance in the applications of the calculus.

Exercise 2

1. Write down the equation of the straight line joining

the points (2, 3) and (— 5, 6). What is its gradient?

2. Find the equation of a straight line through the point

(3, 7), and making an angle of 30° with OX.
3. Find the equation of the straight line through the

point (— 5, 3), which is parallel to the straight line

y = 2J[; + 7.

4. What is the gradient of the line

3x + /\.y - "J
= o?

5. Determine the value of dyjdx at the point (2, 4) on
the parabola x^ = y. Write down the equation of the

tangent to the parabola at that point.

6. The velocity of a train is varying from time to time.

What is the symbol for the rate at which the velocity

changes with time, at any particular instant t? This

rate is called the acceleration.

T. £1 is invested at compound interest at ?-% per

annum. Show that the amount (i.e. the original sum
plus accumulated interest) is given by

M = R"
where M = amount

and R = I + -^.
100

Hence show that if the money is undisturbed for 10

years, the amount from a 6 % investment will exceed that

from a 5 % investment by approximately 3 shillings.

8. The side of a cube is found by measurement to be

9 in. If there is an error of ^Jir in. in this measurement,
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find an approximate value for the consequent error in the-

calculated volume.

9. Two men, A and B, start from a place O to walk

in perpendicular directions, A at 3 miles per hour, and B at

4J miles per hour. At what rate are they receding from

each other.

10. A cube of copper 10 in. long is heated from 0° C. to

10° C. Find approximately the increase in volume. Take

the coefficient of linear expansion for copper as o-ooooiy.



CHAPTER III

Integration

"A snapper-up of unconsidered trifles."

—

The Winter's Tale.

Areas and Integrals.

Let RS be a portion of the graph oi y = fix)
between x = r and x = s, fig. i (i). Let the area

RrjS be required, where rR and jS are parallel to

OY and rs is the intercept on the OX axis.

This area can be found in many ways. For in-

stance, it can be found by a planimeter, which is an

instrument for measuring the areas of plane figures.

Suppose the area O/PH, where P is any point on
the graph and />P the ordinate of P, is denoted by A.

Let the ordinate /R', fig. i (ii), represent the area

A„ i.e. OrRH, corresponding \.o x = r; and j'S',

the area Ag, i.e. OjSH, correspondjng to x = s,

and so on. Then ^'P', fig. i (ii) represents the area

O/PH, A or Aa;, corresponding to Op = x. A is a

function of x, for to each value of x there corresponds

a definite value of A.

.•, A = area O/PH = ^p-{x), say.

Now, if we fix attention on P, the increase in A as

p advances a little to the right must be smaller and
smaller, as the advance in p is made smaller and
smaller; in fact, there must be a gradual growth in A
as p advances to the right. We should therefore

expect the "area" graph (A, x) to be a smooth curve
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between R' and S', i.e. to represent a continuous
function of x.

Suppose V increases steadily from rK to jS, fig. i (i),

then the area pqQP, which is the increase in area
A when x increases from Op to Oq, lies between the

S'

Fig. I

areas of the rectangles pqNF and pqQr', i.e. the areas

are in the following order of magnitude

;

/^rNP < /^QP < pqQy,
i.e. pf.pq < pqQF < qQ.pq,
i.e. y^.x < AA < {y + Aj»')A;c,

••e. y < -^ < y + Ay.

Since the curve RS is continuous, as Ax
A 1

, . AA
Ay also

o,

tween y and y + Ay,

o, and since -r— always lies in value be-

!->. Ax
dA

y, i.e.

^ =^- •(I)
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The derivative of the "area" function, fig. i (ii),

is therefore the ordinate of the (x, y) curve,

fig. I (i), at any value of x, between x = r and
X = s.

The "area" function, '^(x), is therefore a function

whose derivaiive, at any point, is f{x), the given

function.

t/»-(x), therefore, satisfies the equation

^V(^) = /(^).

where /(x) is the given function.

In the differential calculus we are given '^(x) and

asked to findf(x). Here we are givenf(x) and asked

to find '^(x). Hence we have to work the processes

of the differential calculus backwards in order to find

areas, for which purpose a special notation is con-

venient.

If i/f(x) is given, we say that

^^{x) = Ax\ (2)

where -j- denotes the operation of finding f(x) from

T/r(^) by the rules of the differential calculus.

In the present case we write

V'W = \Ax)dx, (3)

which is exactly the same statement, in another nota-

tion, as equation (2).

Equation (3) is read

i/r(x) = \!a& integral olf(sc)\

equation (2), f(pc) = the derivative of •^{x).
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The reader will notice that, if

then •»/r(x) = l/(x)dx;

or putting z for ^{x), if

^ = /(^) = X, say, (4)

then = j'Kdx (5)

Equations (4) and (5) are not deduciwns, one from

the other, but merely different notations for express-

ing the same fact, namely, the derivative of z is X, for

any value of x at which (4) and (5) hold. If we are

dealing with a problem of the differential calculus,

notation (4) is convenient; if the problem is one of

the integral calculus, notation (5) is convenient. The

reason for using the sign I has been mentioned on

p. 16.

EXAMPLE
If Hx) =
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If we know </'(^)> ^^ ^^" P'o*- -^ ~ '^(^)>

fig. I (ii), therefore this curve becomes known when
\[r{x) is known.

At a; = r, \ff(x) = \]r(r).

At X = s, ylr(x) = ^{s).

But the area KrsS required is the area A up to

X = s^, less the area up to :»£; = r; no matter what

value of X (less than s) we start measuring the area

from.

The area required is (Aj — Ar), i.e.

When the integral is to be taken between definite

boundary values of x in this way, we write

'f{x)dx = ir{s)-ir{r), (6)
/;

where r is called the lower limit, and j the upper

limit, and ylr{x) = lf{x)dx.

Siwh an integral is no longer a function of x. It is

a definite quantity, ^{s) — ^r(r), and it is called

a definite integral. When the limits are not specified,

the integral is a function of x, and is not a definite

quantity. It is called an indefinite integral. The
process of finding y\r(x)^ given f{po), i.e. of finding

jf(x)dx, is called integration.

Evaluation of Definite Integrals.

The value of the definite integral

f{po)dx
IJ a

can be found in at least three ways.

I. By equation (6), the integral represents the area

of the figure AabB (fig. 3), and this area can be
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TC) FIND ,[ 3x^ dx

Scales: Horizontal 2" s unity.

Vertical V= unity.
.*.

I sq. in. of diagram area = unit product,

A C B is graph of y=3x2^
.". diagraiTL area of

Aa bB =f^^ 3x2 jx

Diagram area AabB equals, nearly

A. BCD =Ji X Ix 2-60 1-30
A. AFC ='^x IX l-87=0- 93

D. CE = I X 1-87 =1-87
D Ab =2 X 1-50 = 3-00

7- lO

^3x*dac = 7- lO nearly
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readily found when the graph of jj/ = f{x) is drawn.
This method has already been touched upon in the

Introduction.

As an example, find graphically

(•2

I 2>x^dx.

The graph ofjv = 3^^ must first be plotted.

Take 2 in. horizontally equal to i, and J in. verti-

cally equal to i. .". i sq. in. of area in the diagram
represents one unit of real area.

The figure is drawn in fig. 2.

Full details of the calculation are given on the

figure.

It will be seen that the result is 7-10.

2. The name "integration" suggests adding up,

just as differentiation suggests taking differences.

We have already seen in the Introduction that there

is an addition buried in the preceding work.

Divide ab (fig. 3) into any number n of equal parts,

and erect ordinates at the points of division. Let

Op = Xp, Oq = Xg^, &c.
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Find the area of each elementary rectangle, such as

^PlQ' The area of this rectangle is

pV y. pq = f{Xp) X A^.
The area of

Qqttf = f(Xq) X ii,x,

and so on for each area. Hence the sum of all the

rectangles between x = Oa and x = Ob is

2^{/(x)Aa;} = area required w^flr/)/ (7)

Consider the word " nearly " in (7) a little further.

The neglected areas are 2(P^'Q). Translate each

of these areas parallel to OX into the final area

Vw6B. The sum of them all is manifestly less than

the area V»6B.
But this area itself is less than f{b) x vb.

:. the sum of the neglected areas is less than

f{b) xvb.
Now, /(b) is finite, hence

/{b) X vb —> o as vb —*^ o,

i.e. f(b) X Ax —>• o as Ax —* o,

since all the subdivisions pg, qt, . . . vb are equal

by construction.

Hence

1.gf{x)Ax —* the area Aa^B as A^ —> o,

i.e. Lt 2*/(:'c)Ax = area AadB
A* —^

/:
Ax)dx (8)

To determine the integral, i.e. the area in question,

to any required degree of accuracy, it is necessary

to divide ab into parts sufficiently small to ensure

that the ratio of [/(*) X Ax\ to 2^{/(^)A^} is less
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than the given fraction which defines the degree of

accuracy.

This example brings out the fact that integration is

really addition, more or less disguised, and immedi-

ately suggests our finding the value of

f{x)dx
JJ a

by direct addition, as this integral is

Lt •2lfix)^x (9)
Aa; —

The finding of this limit is simply a matter of arith-

metic, using progressively (and sufficiently) dimin-

ishing values for Ax, depending on the accuracy

required in the result.

We can write down a list of all the products

/{x)Ax, taking Ax = ^ {b— a), say.

At x = a, f{x) = f{a) ; the first product is therefore

f{a)
(^ - ") = P/^-^) .

100 100

The length of the next strip is the value oif{x) at

, . r« + (±=i^)-\ i.e. fL + (^^)l = p..
L 100 J I 100 j

^

The area of the second strip is therefore

P (b - ^)
.

100
2

There will be, in all, 100 strips. The sum of them

all is

[P,+ P,+ P3+... +Pl00](^)
100 /^

= z p (^. (10)
1 «\ 100 / ^ '
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This value is the sum

^J{x)^x, when ^x = (-^)-

As we make A^ a smaller and smaller fraction of

{b — a), the value of

^\f{x)^x

will approach nearer and nearer to the value we
want, viz.

f{x)dx,
IJ a

which is by definition the limit to which

E*/(x)Ax tends as Aair —> o.

The arithmetic is evidently lengthy if high accuracy

is aimed at. We will take a worked example with

fairly large intervals, and compare our result with

accurate results which we shall obtain later.

WORKED EXAMPLE

Find an approximate value of I j^x^x.

We have

I
yi?dx » 2 3Jc'Ax

Take
A b — a 1/ V IAx = = — (2 — i) = —

.

Then/(i) = 3, hence 3 x t\y
= 0-300 is the first term of

the sum.

The calculation can be best pursued in a tabular form. Notice

that the factor 3 goes right through the arithmetic as a factor,

hence

Sj -^x^Ax = 32 x^Ax.
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We shall therefore take Sj x^^x, and multiply the answer
by 3-
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IfjV = x^, n being a positive integer,

^ = w;c"-i by Rule i.

:. X" = jnx'^-^dx (12)

We have thus found the value of the integral

jnx^'^dx in terms of x.

Suppose we wish to find

nx'^''^dx.

We have
fi

x^ = Inx^'^dx = our ^{x) of pp. 71 to 75.

,
.*. the value of the integral between x = 1 and

a; = 2 is (2" — I"), by equation (6),

I.e. 2" — I" = / nx^-^dx.

Generally,

nod^-'^dx (13)
a

It will be seen that this method consists in work-

ing backwards from known rules of the differential

calculus. It is in this sense that the integral calculus

is the inverse of the differential calculus.

Rule II.

jnx'^-^dx = x^,

i.e. the integral of n timte Ar"-^ is jir", when n is

a positive integer (excluding n = o).

The finding of the integral as a function of x is

a great advance on the other two methods. Either

of these two methods takes time and is approximate

;
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but the third method is accurate and quickly applied,
[2,

e.g. we can quickly check the result for I 2>x^dx.

I
:ix^dx =

\
x^

\
= 2' — i' = 7,

The value obtained by arithmetic was 7-005, and
by the graphical method y-i.

Exercise 3

I. Find by the arithmetical method, taking- ten steps.

/:

5

1

Find by the graphical method.

3. Find by Rule II,

^x*dx.
/:

Compare the three results.

4. Find by the arithmetical method, taking ten steps,

/:

5

e^dx,

taking your values of the function e* from a book of

tables. Is it approximately equal to (e^ — e^)? What does

this result suggest? [Take e = 2-718 in this example.]

5. Find by the graphical method,

/:
sinxdx.

Is it approximately equal to (cos 0° — cos it)? What does

this suggest? {x is in radians, see p. 102.)

6. Find by the graphical method,

x^{i — xfdx.
/
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7. It was found, p. 56, that

ds

where v is the velocity at i, and s is the distance travelled

by a body moving in a straight path from rest in an

interval of time /. Express the distance travelled as an

integral of velocity and time. Assuming the velocity is

proportional to the square of the time /, and the constant

of proportionality to be 3/11 (z> = S/"'^), if distances are

measured in feet and times in seconds, show that the

distance travelled from rest in T sec. is juT^ ft. Express

this result in words.



CHAPTER IV

Limits

"Long calculations or complex diagrams affright the timorous and
unexperienced from a second view; but if we have skill sufficient to

analyse them into simple principles, it will be discovered that our fear

was groundless. "

—

Samuel Johnson.

We have already used the word "limit" to denote

a quantity to which another quantity can be made to

approach as nearly as we please.

We will now examine the nature of a "limit" more
closely, as this idea is the very pivot of our subject,

and of all higher mathematical analysis. No real

progress can be made till the idea is thoroughly

grasped.

As a simple case, let us seek the limit of %' at

X = ID (fig. i).

At the outset, a warning is necessary. The limit

has nothing to do with the value of the function at

X = ID. It depends on the values of the function

round about x = lo, but not at x = lo. We de-

liberately exclude the value ^ = lo and the corre-

sponding value of the function in finding the limit

required. The reader will soon see why this is so.

We have already noticed that, if there is a limit,

it is approached as x approaches the given value.

Suppose

X = 9'9, then x^ = 98-01

X = 9-99,
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From these figures, it appears that

x^ ICX3 as X lo from values oi x less than lo.

Now, try some values of x greater than lo.

Suppose

X = io*i, then ^^ = i02'0i

X = lO'OI, ,, X^ = I00'200I

X = lO'OOI, x" I0O'020O0I.

These values of x^ again approach loo as x -* lo.

The figures suggest that loo is the limit we are

seeking. Let us test this suggestion.

Tabulating these figures.

*
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Each of these intervals of x contains the prohibited

value X = ID, and as the interval shrinks, the bounds
for

I

x^ — 100
I

shrink too— the third and fourth

columns in the table show this. It therefore seems

likely that, no matter how small a quantity we select

for the upper bound of
|

:!C^ — 100
|

, we can find an
interval containing the value 10 such that if x lies in

this interval, and does not have the value 10, the

1 Y
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and see whether we can choose an interval so that if

X lies in this interval, then

O <
I

^ - IOC
I

< -^2-

Case I. X > lo.

Suppose first that x is greater than lo.

So long as

lO < X < ^IOO+^
\o^'

then lOo < ^^ < loo H 75

I.e. o < x^ — 100 <

|12'

I

12»
ID'

i.e. ix'' — ico) lies between o and —^.\ / jq12

If then X lies in the interval between x = \o and

^ = 4-^1100 +^
(and does not have either of these "end values"),

then the inequality

^.2o < X'- — 100 < —
ID,12

holds good.

Now, suppose, instead of —j-^, we use —jjooj,
i.e.

00000 I, with 11,999 noughts between the

decimal point and the i at the end. We can still

find an interval, viz. from x = 10 to

X = +yioo + :^^,

such that, if x lies in it, the inequality

o < x"^ -\QO < -^
holds good.
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We will now try to put any number, excluding zero,

for the fraction. For definiteness, we will first sup-

pose the number to be < —
^v ^^ ^ be such a

number, we easily see that so long as x lies in the

interval between

X = 10 and X = + Vioo + e,

then o <
I

^^ — 100
I
< e holds.

The difference between x^ and 100 can therefore

be made less than any assignable number e (less than

—j^ j, excluding zero, by choosing a suitable interval

within which x must lie.

Case II. x < 10.

We have so far supposed x > 10.

Now, suppose a; < 10; :x;^ is then less than 100, and
the positive difference between 0(? and 100 is

100 — x^.

So long as the inequality

10 > ::c > + V'oo \-. holds,

then 100 > ^^ > 100
j2, by squaring each term,
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—descending (or ascending) when the signs of all

the terms are changed. For instance

3 > 2 > I,

but -3< -2< -I.

If then o > — (loo — x^) > — y-j^j

then o < ICO — x^ < -r-^-

I

lO*'

Hence so long as x lies in the interval

[lo, + yioo- ^aj,

(loo — x"^) or
\
x^ — ICO

I

lies in the interval

[°' ^
This argument is quite general, and if we put e for

any positive number (less than —jjj, we get

o < (lOO — x^) < e

so long as x lies between + v'loo — e and lo, where

e can be any positive number which is less than

—jg. We have now proved that

1. \i X > lo, o < \
x^ — ICG

I

< e,

provided x lies between lo and + s/ioo + e, where

e can be any finite positive number < —jg.

2. If X < ID, then o < |
^ — lOO

|
< e,

provided x lies between lo and + Vioo — e, where

e can be any finite positive number < —j^.
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There is no need to examine specially values of

e > —12, for if e > —j2, we only have to keep x

between

+ y 100 - -Vj2 and + yjioo + ^.
excluding x = 10, to ensure that

<
\
X^ — 100

I

< e,

for this limitation of x is sufficient to ensure that

the inequality

o < \
x^ — 100

I
< —j2 holds, (i)

and if e > —j^ the inequality o <
\
x^ — 100

|
< e

must necessarily hold, for the same interval of x.

We can therefore always find an interval including

X = ID, Stick that if X lies within this interval, the

inequality

o <
I

^^ — 100
I
< e holds, (2)

except at the value x = 10, no matter what finite

positive value we give to e, except zero.

When condition (2) holds, we say, as on p. 39,

that
I
x^ — 100

I

tends to zero as x tends to 10,

i.e. x^ tends to the limit 100.

It is clear that if we choose progressively decreas-

ing values of e, the permissible range of x becomes

more and more restricted, for the range D is given by

D = -s/ioo + e — s/ioo — e,

i.e. D^ = 200 — 2\/ioo^ — e^,

and if e is given progressively decreasing values,

1 I I

J^ ' jq12000 > jqIZOOOOOO
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and so on, (loo^ — e^) takes progressively increasing

values, and therefore [200 — 2x/ioo^ — e^] progres-

sively decreasing values, hence D progressively

decreases.

The values of x therefore become restricted to those

"in the neighbourhood" of 10, 10 being always in-

cluded in the interval.

We therefore say that

I

^'- 100
I (3)

tends to zero in the neighbourhood of 10, i.e. x'- tends

to the limit 100 in the neighbourhood of x = 10.

As the admissible range of x shrinks more and

more, the only value of x we can be sure of in-

cluding in the range is 10, just as the only point

which certainly remains inside a circle, if we shrink

the radius more and more, is the centre of the circle.

Now this progressive shrinking of the interval is

not only admissible, but is the very essence of the

process. The value x = 10 is the nucleus, so to

speak, of the shrinking interval, and as it is the only

point we are always sure of securing in the interval,

it is reasonable to associate the limit we have found

with this value of x. We therefore say that the limit

of x^ at X = 10 is 100.

If we are dealing with quantities we can put the

matter thus:

—

The quantity x^ can be made to differ from 100 by as

small a quantity as we please, by bringing x sufficiently

near to 10, no matter whether it is more or less than 10.

In such circumstances we say that the quantity x''

has the limit 100 at x = 10.

The reader will now see that the limit of x^ is a

number we associate with a given value of x, here

X = 10, and this number is obtained by considering
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the valties of x^ corresponding to values of x round
about lo as these values of x progressively approach
lo ; it is not dependent in any way on the value of x^

at X = lo, a value which has been deliberately

excluded from consideration all through the calcula-

tions.

Definition of a Limit.

f{x) has the limit I at x = a, if, corresponding
to any finite positive quantity e, however small we
like to make it, we can find an interval of x, includ-

ing the value x = a, such that the inequality

<
I
fix) - /

I

< e holds,

so long as the inequality

<
\ X — a

\
< ri holds,

where ;; is a finite positive quantity to be found,

which depends on the value chosen for e.

As e decreases t] decreases.

In other words, the limit / exists if

1
f(x) — I

I

tends to zero

as X tends to a.

Or we may put it still more briefly, in symbols.

If, as X -^ a,

f{x) -> /,

then / is the limit of f{x) at x = a.

This shorter statement is, however, only apparently shorter, as it

implies the meaning of —> which is expressed in words in the longer

statement. It is, however, a very useful pictorial notation, as the

sign — suggests vividly the process of finding the limit.

It should be noticed that the statement in the definition excludes

the value x = a; for the conditional inequality is o < |
^ — a

|
< ?;,

i.e.
I
a; — a

I

must not equal zero, i.e. x must not equal a. Further,

it implies nothing whatever about the value o(/{x) aX x = a.
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This example has been worked out at length in order to bring out

the full details of the idea of a '-'limit". Under ordinary circum-

stances, we should not go through the whole of the working, as it

is obvious that
«" —> lOO

The point is that the full working out expresses quite definitely, by an

arithmetical method based on inequalities, what appears to be obvious

from the graph, and, as the idea of the limit is so important, it is worth

while to consider one case at least in detail. Further, limits are not

always obvious, and sometimes a graph cannot be drawn. Skill in

the use of inequalities is very useful in all branches of mathematics

and physics. By using inequalities in a common-sense way we can

often set definite limits to approximate calculations, and applied

mathematics, physics, and engineering all bristle with these. For

example, a glance at fig. 2, p. 76, shows that the area of the figure is

greater than f(a) X (4 - a), and less than f(b) X (i - a). Hence

/(a) X (4 - a) < f f{x)dx < /(b) X (J - a),

J a

if f(x) is positive and continually increases as x increases from a to b;

and, whether we can integrate

/'
J a

f(x)dx

or not, we undoubtedly can work out f(a) X {b — a) and f{b) X (i - a),

and thus get bounds to the integral within which it must lie. These

bounds are often quite close enough for practical purposes, so that we
need not integrate the expression.

Values of Functions—Continuous Functions.

We have found that the value of the function x^ at

^ = 10 has no bearing on the limit of x^ aX. x = lo.

The limit at ;c = lo is loo and the value of x^ at

X = 10 is 100. The limit equals the value of the func-

tion in this case. As a matter of fact, nearly all the

ordinary functions we come across in applied mathe-

matics possess the property that the value of the

function, for a given value of the variable x, is iden-

tical with the limit of the function at that value of x.
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Such functions are called continuous functions.

Suppose f{pc) has the limit I sX. x = a, then if

f(pc) is continuous at

X = a,

f{a) = I.

It is evident, then, that when f(x) is continuous at

^ " ^ /W -> f{a) as jc -> «.

This is manifestly the state of things at any point

on a smooth graph.

\i y = f(x) is continuous at every point between

a and b, then \i y and x are the co-ordinates of any
point on the graph oif{x) between a and 6, then

Ay —> o as Ax —> o.

This follows from the fact that

f(x + Ax) —> f(pc) as X + Ax —> X,

i.e. y \- Ly —=* y as X -\- Ax —> x,

i.e. A^ —> o as Ax — o.

This property of continuous functions is most im-

portant.

Undetermined Functions.

In the calculus, certain important functions crop up

which have no value for certain values of x, and it is

just at these values of x that we specially want to

know something about the behaviour of the func-

tion. Fortunately, it is not necessary for us to know
the value of the function at these special values of

x; what we want to know is something about the

values of the function for values of x near these

special values of x. The limit gives this informa-
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tion concisely. As we have already seen, we do not

need to know the value of the function at a selected

value of X to find the limit of the function at that

value of X.

WORKED EXAMPLE

Consider the function "

—

^^ aX x = i.
X — I

This function lias no value at j; = i, for if we put x = i,

we get
I — I o

/(I) =
I — I o

This result is quite useless, as we can attach no meaning to it.

But we can easily show that has a limit ai x = i, for
X — I

lies round about the value 2 when x is near unity. When

x^ — I I'Oi^ — I I -0201 — I
X = I'OI, = = = 2-OI.

X — I -oi •01

X'' — 1 0-q80I — I — O'OIQQ
X = .99, = —H = 23 = 1.99.x—1 0-99 — I — o-oi

These figures point to 2 as the limit, and the reader will have

no difficulty in showing, just as we have done for x^, that we can

always find a positive value for t; such that

\x^-i
IO <^ — 2 < e,

\ X—1 I

so long as
O <

I

AT — I
I

< 1),

no matter what arbitrary finite positive value we give to e.

We can, however, see that the limit is 2 at a; = i, without

going into the detail of the inequalities.

i;2 —— = X -\- I, when ;c — i is not zero,

and Lt (^^-^^) = Lt (^ + 1) =

We cannot say that

= X + 1 for all values of x,
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And that when x = i, x •\- \ =2.

.',
'- = 2 when X = I,
X — \

because the first equation is true only when ji; — i is not zero, i.e.

when X is not unity. It is therefore inadmissible to put ;i; = i in the

next line of the argfument.

When :ir = I , division of*^— i by«— i is division by zero, which

is not allowed in the laws of algebra (p. 108, Ex. 9), and, worse, it is

division of zero by zero, which is an operation without any meaning;.

Further, even if the reasoning were valid, it would give the

value of '^—^^^— at * = i, and this value has nothing to do with
;c— I

the limit at ;c = i which we require.

EXAMPLES

1. Show that if y —> b b.s x —> a, the limit at j; = a of

{a-\- y) is a + b.

2. Find Lt x?.

Important Points about Limits.

1. The limit is not necessarily the value of the

function at the value of x under discussion

—

x = a,

say. The function, , e.g. has no value at

X = a.

2. The limit is a number from which the values of

the function, in the immediate neighbourhood oi x = a,

differ by as little as we please.

3. By calculating the value of the function for a value

of X sufficiently near to x = a, a value of the function

can be found differing as little as we please from the

limit.

4. The notation of limits is

Lt fix) = /,

X = a

(D102) 8



98 APPLIED CALCULUS

i.e. the limit of f{x) at x = a \s l. This notation

can be put

f{x) -> / as ^ —> a,

which reads f{x) approaches the value / as closely as

desired when x approaches the value a sufficiently

closely.

We will now discuss certain theorems which will

be very useful in later work.

Theorem i. Limit of a Sum or Difference.

The limit of the sum of a finite number offunctions

of X is equxil to the sum, of their lim,its.

/i(^) -> /i as 5C —> a,

fi(x) —* 4 as ^ —>• a.

When X approaches a, f-^{x) approaches 4 and f^lp^

approaches l^.

.'. fi{x) + fi{x) must approach ^ + 4,

i.e. fi{x) + /2(^) -> li + l^SiS X —* a.

We can put this argument thus

:

Let PQ (fig. 2) be the graph oi fi{x).

Y
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Then, at any point N given by x = ON,

NP = NM + MP,
i-e. /i(^) = 4 + 0-1,

where a-^ = MP.

In the figure o-i and l^ are positive; in general, they

may be either positive or negative quantities.

\if^{x) has the limit l^as x —^ a,

fi{x) —> l^ as X —> a,

i.e. as fig. 2 shows,

cTi —> o as X —> a.

Similarly,

/2(x) = 4 + 0-2, where 0-2 —> o as x —> a.

Adding
/i(^) + /aW = A + 4 + 0-1 + <^2-

Now, as o-j —>• o and 0-2 —> o when :«; —> a,

.'. o"! + 0-2 —»• o when x —> a.

•'• fi{x) +Mx) -> 4 + 4 as rn; -> a,

i.e. Lt [Mx)+Mx)] = 4 + 4.
x = a

The theorem is thus true for two terms, and can

similarly be extended to any number of terms.

Theorem 2. Limit of a Product.

The limit of the product of a finite number offunc-

tions ofX is equal to the product of their limits, if these

limits are allfinite.

Let

f-^x) —> li RS X —^ a,

fz{x) -* l^ as X —^ a.
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As before, we may put

fi{x) = /j + cTi, where (Ti —* o as x —* a,

and/2(x) = 4 + o-a, where o-g —> o as x —> a.

•'• /ii^)fi{^) "* A4 as X —> a,

since o-i —>• o, o-^ —> o, and 0-10-2 —> o, under these

circumstances, i.e.

Lt {A{x)Mx)} = 1,1^
X —> a

The theorem can be extended to any number of

factors.

Theorem 3. Limit of a Reciprocal.

The limit of the reciprocal of a function of x is equal

to the reciprocal of the limit of the function ofx if this

limit is not zero, i.e.

a; _^ a\f{x)/ I

if Lt f{x) = I,

I not being zero.

As before, put

f{x) = I -\- a; where o- —> o as x — a.

Then
f{x) l+cy'

and -j—— approaches 7 as o- —> o.
t + O- i

•• Lt ( ' ) = I
X -^ a\f{x)J I

if Lt f{x) = I.
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Theorem 4. Limit of a Quotient.

The hmit of the quotient of two functions ofx is equal

to the quotient of their limits, if these limits are finite,

and if the limit of the denominator is not zero.

This theorem follows from Theorems 2 and 3 above,

'•^-

Lt fM = h
X —> a/i(p^) ti

if Lt f{x) = 4,
X — a

and Lt f2{x) = l^, 4 not being zero.

WORKED EXAMPLES

I. Find Lt {«„ + a^x + . . . + anx!>^}
X —>

n being a finite positive integer, and the coefficients of x being

all finite numbers.
Lt (flo) = «o

a: —>
Lt (a^x) = o

X —>
Lt (a^x^) = o

X —>

Adding, by Theorem i,

Lt {(j|, + ai.r+ . . . + onx"} = «„.
a; —>

2. Find the limit

y 2X^ + 2x^ + x*

3.r2 + x'^ + xO'

Divide numerator and denominator by x^.

2x^ + 3x^ + X* _ 2 + 3.r + x^

yc^ + x* + x^ i + x^ + x*'

Lt (2 + s*' + jr^) = 2 by Example i above.
X —>.

Lt (3 + x^ + x*) = 3 ..

« —>
/. by Theorem 4, Lt (given function) = f

.

X —>
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Circular Measure of Angles.

In theoretical investigations about angles and func-

tions of angles, the angles are measured in circular

measure.

Let L AOP be any angle (fig. 3). About O as

centre, describe a circle APQ of any radius.

Fig-

3

By Euclid VI, xxxiii, the angle AOP is propor-

tional to the arc AP on which it stands.

Hence any other angle AOQ must bear the same
ratio to L AOP that the arc AQ bears to the arc AP

;

hence, if we make the arc AP = OA = r, and call the

angle AOP the unit angle, then

Z.AOQ, measured in these units,

_ AQ
-, if J

r r
AQ.

Putting Q for the angle AOQ, measured in these

units, „

e = ;. (4)

i.e. J = rQ : (5)

This unit angle is called the radian, so is the

number which measures the Z.AOQ in radians.
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To Convert from Radians to Degrees.

Consider the right angle AOQ (fig. 4).

Q

103

Fig. 4

The arc AQ = i x i-wr = rr

:. d = "^jr by (4)

TT

2'

i.e. the circular measure of a right angle is — radians.

From this formula we can get any other angle by
proportion thus:

Suppose we want the circular measure of 10°.

Let 6 = the required measure,

then as 10° : go" : : 6 : -,
2

i.e. 90 X = - X ID,
2

= IP X ^ = ^.go 2 18

In like manner equation (5) can be expressed in

degrees.
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The circular measure of i/r° is

i8o ^ '"•

• Vl V ^ - -^

'•^- ' = iw^"^ ^^)

The formula is in its simplest form when the angle

is expressed in circular measure, being then simply

J = re.

The circular measure is the best measure in which

to express angles in theoretical work, since mathe-

matical formulae involving angles take their simplest

form when the angles are so expressed. In practical

measurements the "degree" measure is used.

Tables for converting angles from one measure to

the other are given in books of tables.

EXAMPLES

1. Convert 30°, 45°, and 90° into circular measure.

2. Convert 1, J, i -54 radians into degrees and minutes.

Trigonometrical Limits.

The following relations are important:

(a) taxi X > jc > sin jf, (7)

where x is the radian measure of a positive angle less than a

right angle, i.e.

o < X <-.
2

Let PQ be the arc of a circle of radius r (fig. 5), subtending an

angle at O of 2X. Let FT, QT be tangents at P and Q, meeting

in T. Join PA and QA ; then the quadrilateral OPAQ < sector

OPAQ < quadrilateral OPTQ.

.•. f* sin X < t^x < 9^ tan x.

.', sin x <. X < tan x.
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The reader will notice that this inequality is merely a mathe-

matical statement of the axiomatic inequality :

—

Figr. s

The quadrilateral OPAQ < sector OPAQ < quadrilateral

OPTQ. (See fig. "s.)

(h) x>^va.x> X-—, (8)
4

if X is positive.

Suppose X to be less than ir. We have

• sin X = 2 sin \x cos \x,

i.e. sin ;r = 2 tan \x cos^ \x

= 2 tan \x (i — sin^ Ja:) (g)

But tan \x > \x,

and sin \x < \x.

:. sin .r > 2 X \x {i — {,\x)\

i.e. sin x > x — J.r^,

and sin x < x \iy inequality (a).

.'. a: > sin ;i; > * — J.r'.

We shall only use this inequality and the following one, when
X is less than ir.

(c) I > cos X > I — \x^,

To prove this, we notice that

cos X <. I.

.(lo)
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This follows from the definition of cosine x.

And cos X = 1 — 2 sin' ^x

> I — 2 (i^)^ as sin Jar < ^x

x^
> I--.

2

To prove that Lt (?BJ^ = i (n)

By inequality {b) above

X > sin X > X — \x^.

sin X , ,
/. I > > I - ix\

X

,. Lt C^ = I,

since the limit of i is i, and the limit of i — \x^, as

X —* o is I also.

To prove that Lt ( ) = i.

tan X sin x
X X cos X

Lt ft^^) = Lt ('-'^) X Lt (-^).
a; —> oV

Now Lt COS :v = i by (lo) above,

.-. Lt (-^) = I.

X _> oVcos x/

r /tan x\ '/
V

,'. Lt ( ) =1X1 = 1 (12)
x-^0\ X J

How the limit is approached.

When Lt /(.r) = /,

X — a

whether x —> a from values of j; < it or from values of x > a,

if / is a normal limit.
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Sometimes Lt f(x) = h

when X approaches a from values of x <. a,

and Lt f(x) = h
X —^ a

when X approaches a from values of x > a.

The former is called a progressive limit, the latter a regressive limit.

Normally, 4 = 4 "= ^

The cases are illustrated in Rg. 6. ,

In all the simple cases dealt with in this book the limit is approached

normally. It has not been considered necessary to distinguish between
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6. Show that ^ /arc tan a;\ _

7. Show that ^^ rsinjr+^- sin^l ^ ^^^^

[Combine (sin y + x — sin y) into a sine-cosine pro-

duct of semi-sum and semi-difference of angles.]

8. Show that ^^ ["
tanj^r^-tan^

l ^ ^^^j^^
[tan ji/ + :*r — tan y\ _

X J

9. Point out the flaw in the following argument:

Let X = a.

.'. x^ = ax.

.'. x^ — a^ = ax — a^.

(x + a) (x — a) = a(x — a).

.'. X + a = a.

.'. a + a = a.

.'. i = I.



CHAPTER V

Practical Applications

" It's no what we hae, but what we do wi' what we hae,

that counts."

—

(Old Scots Proverb).

Beginners often have some difficulty in seeing why
the calculus is so useful in the practical problems of

physics and engineering. Nature is always chang-

ing, and things and their properties vary. Some of

these properties are measurable— for instance, the

relative positions of the heavenly bodies, the speed

of trains, the temperature of bodies, the pressure of

the atmosphere, the electric current in a wire, and
so on. The quantities which measure these pro-

perties change, as the properties themselves change
in the course of Nature, and, as we saw in Chapter I,

the Calculus is the branch of mathematics which deals

especially with changing quantities. The principle

underlying its application may be seen in the follow-

ing example.

In many cases first principles or experience show
that some quantity {_y) probably depends on another

quantity (x). For instance, the distance a train moves
depends on how long it has been moving. If j is the

distance in feet travelled in an interval of time i sec,

J is a function of i, i.e.

^ =m • (0

Everyone knows that the speed of the train comes

into the problem. If the speed is fast, the train will
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move farther in a given time than if the speed is slow.

If the speed is constant, the definition of speed leads

at once to j = vt, where v is the speed in feet per

second, and so/(^) = vt. If this were all that could

happen the problem would be solved, but the speed

may vary from point to point in t/ie path. It is just

this kind of difficulty that we have already encoun-

tered, and that the calculus enables us to overcome.

We have, on p. 59, arrived at the result

ds

dt = ^'

where v is the velocity at the instant t. We can

express thisfact by means ofan integral, see p. 75, i.e.

= I vdt,
J to

.(2)

where S is the total distance travelled, in feet, in the

interval (t^ — t^) sec.

Can this integral be evaluated?

t (seconds)

Fig. I

If w is a known function of t, we may be able to

integrate I vdt by the rules of the calculus, and get
J tfj

the result we wish. Or, if we have a graph of v in

terms of t (fig. i), then, since | vdt is the measure of
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the shaded area, the answer can be obtained graphi-

cally. This is a more powerful method than the

first, but is longer.

If A is the area of the figure in square inches and

the scales of the figure are

I in. vertically = V ft. per second,

I in. horizontally = T sec,

then I sq. in. = VT ft.

Hence vdi = [VT] x A = /A, where /is

the scale factor [VT].

EXAMPLES
1. If z) = a^, a being a constant

S = I atdt
J h/<!..

= ci I tdt, since a is a factor of every term in tlie
' k r

sum denoted by / , and may therefore be taken

outside tlie / sign (see p. 80).

rit2-|(i= o - by Rule 2, p. 82,

i.e. S = -
[^i^
- ^0"] ft.

2. Area of a Circle.

Let R be the radius of the circle in feet (fig. 2), and x the

radius of a circle inside the bounding circle R.

Let A be the area of the circle up to radius x, in square feet.

Assume A = f(x), where f(x) is to be found, then AA is the

increase in area arising from an increase b^x in x.

Let c be the circumference of the circle of radius x\

Cj, the circumference of the circle of radius (x + Aa;).

Then cb-x < AA < Cyt^x.

:. c<^<c,
iiX

.', 2Trx < -7— < 2ir{x + Aj?).
Ar
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Finally, when Ax —> o, r and Cj do not differ sensibly, as the

outer circle shrinks on to the inner one, i.e. c^ —> c as Ax —> o:

I.e. -=- = c = 27r:ir.

ax

Fig. 2

(When we proceed to the limit (Ax —> o), we drop into the

d/dx notation.)

/. A = 27ri xdx; 27r is constant, and therefore is placed
•' " outside the sign of integration.

,', A = 27r -r-
J

• ''y ^"'^ ^> P- ^^>

= 27rR'

2

= :rR2 sq. ft.

3. Motion under the Influence of Gravity. — Required

the distance, in feet, that a stone fallsfrom rest in T sec. under the

influence of gravity—neglecting air friction. The acceleration of
gravity is 32 • 2 ft. per second per second (= g), a constant.

Let V be the velocity of the stone at the time t sec, in feet

per second, then -j- is the acceleration of the stone at the time
at
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t in feet per second per second, since dvjdt is the time-rate of

change of velocity, which is what acceleration is, by definition.

, dv _" ~dt~
^'

:. 11 = jgdt.

The velocity at the end of any interval (^sec.) from the start is

since the stone starts from rest (t = o)

= ^' by Rule 2, p. 82.

i.e. V = gi.

This formula gives us the velocity as a function of t.

ds •Now -J- IS the velocity at t sec .from the start (see p. 59)-

• ^ = et" dt ^'

V = I gdt,

= ytdt,

and the distance traversed from rest in T sec. is therefore

/•T

=
J^

gtdt

Jo

T
tdt

= £[^T2 - 02] by Rule 2, p. 82.

= igT".

The formula S = ^gT^ = le-iT^,

therefore gives the distance traversed, in feet, from rest in T sec.

4. Moments of Inertia.—Moments of inertia arise in problems
of the bending of beams, rotational kinetic energy, and so on.

Routh defines the Moment of Inertia and Radius of Gyration

as follows :

—

( D 102

)

g
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" If the mass of every particle of a material system be multiplied

by the square of its distance from a straight line, the sum of the

products so formed is called the ' mmnent of inertia ' of the system

about that line.

" If M be the mass of a system and k be such a quantity that

MW' is its m.oment of inertia about a given straight line, then k is

called the ' radius ofgyration ' of the system about that line."

In the bending of beams the M. I. of plane areas is required.

Let the plane have mass, p lb. per square foot.

Let the moment of inertia be required about OY (tig. 3).

Fig. 3

Let w be the width (BA), in feet, of the plane at x, BA being

parallel to OY.
Let I be the moment of inertia (Ib.-ft.^ units) of the area in-

cluded between x ^ a and x = x, and let I "= f(x), where_/(jr) is

to be found.

Al = increase in I, due to an increase A^r in x,

= the increase in I, due to the area ABDC.

Now wAx < area ABDC < (w + Aw)Ax, if ze/ + Aw is the

breadth at {x + Ax),

hence pwAx x^ < A\ < p(w + Aw)Ax(x + AxY,

i.e. pwx^ < — < p{'w -\- Aw) {x -{' Axf.
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•(3)

Now when Ax —> o, Aw —> o,

and hence p{w + Aw) {x + AxY —> pwx^,

i.e. Lt (-7—) = pwx^,

rfl 2I.e. -^ = Bwx'.
ax

If I = whole moment of inertia,

I = p I
wx^dx, if /> is a constant.

This result is in pound-foot units, if the density is expressed

in pounds per square foot, and the dimensions of the surface are

expressed in feet.

Note.—w cannot be put outside the sigfn of integration as it is not,

in general, a constant.

No matter what shape of figure we assume, the conclusion is

the same, namely, I = p j wx^dx. We have only deduced the

formula for fig. 3. j a

Special Case.

Find the moment of inertia of a uniform plane rectangle of

density p lb. per squarefoot, about a line parallel to its shorter side

andpassing through the centre of the rectangle.

X'

"\

X

V
Fig. 4

Let d be the length in feet, and w the width in feet of the

rectangle, d being greater than w (fig. 4).
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Here 6 = -, a = , and w is constant, hence
2 2

/•+? r 3"i"^?

\ = pw\ ^x^dx = pa' — ' by Rule 2, p. 82.

2 L J-j

= m — + —
L24 24J

12

= pwd—
12

= (mass of rectangle) X —

,

12

i.e. I = M— (Ib.-ft.") where M is the mass of the
'^ rectangle in pounds.

This result is a case of Routh's rule, viz. :

—

M.I. about an axis of symmetry

(sum of squares of perp. semi-axes)~| , .

3i 4) 5 -I
mass X

The denominator is to be 3 for a rectang^le or square, 4 for an

ellipse or circle, and 5 for an ellipsoid or sphere.

In the case above there is only one semi-axis perpendicular to

the axis about which I is required, viz. the one perpendicular

to Y'Y, i.e. ^.

Routh's rule gives



A
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Exercise 5

1. Why does the reference to time occur twice in speci-

fying- an acceleration?

Compare an acceleration of i mile per hour per second

with one of i mile per second per hour.

2. A suburban electric train accelerates during the first

20 sec. of its run at ij miles per hour per second; during

the next 40 sec. at J mile per hour per second. It then

decelerates at o«o65 mile per hour per second for the

next 120 sec. The brakes are then applied, and it de-

celerates at 1 1 miles per hour per second until it comes
to rest.

Find , how long the run takes, in seconds ; find the

length of the run, and hence find the average speed of the

train during the run.

(Draw a velocity-time diagram and integrate it graphi-

cally.)

3. In question 2, at what speed is the horse-power

taken by the train greatest? If the train weighs 70 tons,

what is the maximum horse-power used?

4. An equilateral triangular flat plate is immersed

vertically in water so that its upper apex is just sub-

merged. Show that the total force on each face, due to

hydrostatic pressure, is \wl^, where w = weight of water

per cubic foot and / = length of a side of the plate in feet,

5. Show that the moment of inertia of a flat circular

plate, about an axis through its centre of gravity and

perpendicular to the plate, is Mr^/2 Ib.-ft.^, where

M = mass of plate in pounds and r is the radius in feet.

(Calculate it from first principles and check your result

by Routh's Rule.)

6. Show that the moment of inertia of an equilateral

triangular plate, about an axis through an apex, in the

plane of the plate and parallel to the opposite side, is

f M/^ lb.-ft.2, where M = mass in pounds and / = length

of a side in feet.
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7. Calculate the moment of inertia about XX' of a plate

of shape shown in fig. 6, the density of which is i lb. per

cubic inch, and the thickness i in.

AB = 6 in.

AD = I in.

KL = 6 in.

GH = I in.

AK = KB.

State clearly the unit in which your answer is expressed.

(Use Routh's Rule.)

Fig. 6

8. Under the same conditions as in 7, what is the

moment of inertia about the axis MN?
How do you account for the great difference in the

moments of inertia?

g. Calculate the moment of inertia about XX' for fig. 7,

assuming unit thickness and unit density as in 7.

Calculate the moment of inertia about YY'.

10. What general conclusions do you draw from ques-

tions 7, 8, and 9 as to the distribution of material

required to ensure a high moment of inertia? Does the

usual design of a fly-wheel bear out your conclusions?

11. An ordinary fly-wheel weighs i ton and is 6 ft. in

diameter. Assuming 85 per cent of the metal is in the
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rim, which is 3 in. wide radially, what is its moment of

inertia? Fix bounds within which your answer lies.

Figr. 7

12. The field magnet rotor of a large alternator is 5 ft.

long-, and 3 ft. in diameter, and may be treated as a solid

cylinder weighing j^ tons. What is its moment of inertia,

approximately?

13. Taking the earth as a sphere of diameter 8000 miles

and of mass 6067 X 10^* tons, what is its moment of inertia

about its polar axis? State carefully the unit in which

you express your answer.

14. Current is tapped off a pair of street electric mains,

of resistance r ohms per yard, at z amperes per yard. If

the pressure across the mains at the sending end is E
volts, what is the pressure at the far end, if / is the length

of the pair of mains in yards (2/ = Mai length of copper

conductor)?



CHAPTER VI

Differentiation and Integration

" Data aequatione fluentes quotcumque quantitates involvente

fluxiones invenire et vice versa."

—

^Newton.

In Chapter IV certain properties of limits and some
theorems relating to them were deduced. These
theorems furnish many important derivatives and

integrals, and lead to several general theorems of

differentiation and integration which are of the highest

importance.

Differentiation of Sines and Cosines.

I. To find the derivative of sin x.

\iy = sin x,

dy _ y ^ fsin (x + A^) — sin x\
dx ~ ^^^ ol Ax V

Now, sin {x + Ax) — sin x

= 2 sin ^Ax cos (x + ^Ax).

. sin (x + Ax) — sin x
Ax
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Ax

y Tsin (x + Ax) — sin x~\

= Lt r^ijil^l X Lt rcos(^ + iA^)l
Aa; —> OL 2 ^''' J A* —> oL J

by Theorem 2, p. 99.

= I X cos X, by equation (11), Chap. IV.

.'. T-(sinx) = cosx, (i)

I cosxdx = sin X (2)and

2. Tofind the derivative of cos x.

Ify = cos X,

fi^ _ y ["
cos {x + A-y) — cos jc

"!

fi?^ AX -> oL '^^ J

u
[

— 2 sin {x + ^A^) sin ^Aa;"|

whence ^(cos x) = — sin x, (3)

and
I
sin xdx = — cos ^ (4)

(The reader should supply the details omitted

above.)

DifTerentiation of Constants.

I. Additive Constant.

Let^ = f{x) + c where c is a constant number.
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If X changes to {x + Ax),

y + Ay = f(x + Ax) + c,

andji/ = /(x) + c.

Subtracting,
Ay = f{x + Ax) - f{x).

. Ar ^ f{x + Ax)-f{x)
"Ax Ax

Proceeding to the limit when Ax —> o, we find

^ = ^f(x).
dx dx

Rule III.—An additive constant may be ignored in

finding derivatives.

2. A constant multiplier.

Let y = c y. f{x) where c = a constant

number,

y + Ay = ex f{x + Ax).

.'. Ay = cf{x + Ax) — cf{x)

= c[fix + Ax)-fix)].

. Ar ^ J[fix + Ax)-f(x)]\

Ax { Ax )

,. Lt (^) = Lt J[/(^ + A^)-/(^)]|
^ _> a\Ax/ Aa —> I Ax )

= ^ X Lt r/(^ + A^)-/(^)
]

Aa:_>oL Ax J'

-1 = -^- (5)

Rule IV.—The derivative of c times a function of

:e is equal to c times the derivative of the function

of X, or a constant multiplier remains a con-
stant multiplier.
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Differentiation of the Sum or Difference of Func-

tions.

Let y = 0(x) + yjr{x), <l>{x) and ^{x) being

differentiable functions.

Then, as in proof of Rule 3, it easily follows that

^ = Lt f
M(^ + MM]

dx ^x—^o\_ Ax Ax J

Aa!->oL ^^ jAa->0 Ax
by Theorem i, p. 98.

i.e. £{<pix) + irix)} = ^^(^) + £-^ix) (6)

Rule V.—The derivative of a sum (or difference)

of functions is the sum (or difference) of the de-

rivatives of each function, taken separately.

This follows from the fact that the theorem can

obviously be extended to any finite number of func-

tions.

Differentiation of Products of Functions.

Suppose y = uv where u = /(x), v = (j>{x) ; and
suppose bothy(^) and <p{x) are differentiable functions

of X, so that the graph of each function is a smooth
curve.

It is required to find -^ for such an expression.

Ay = (u + Am) {v + Av) — uv

= vAu + uAv + AuAv.

, Ay _ Av Au . Au
" Ax ~ Ax Ax ' Ax'
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Proceeding to the limit where Ax — o,

Lt ^ = Lt (u^) + Lt (vp)
Ait —>. oAx A« —> oV Ax/ A* —> o\ Ax/

+ Lt (av^\
i _>, o\ Ax/

Since ?:) is a continuous function, A© —> o when
A:>c —> o, whence by Theorems i and 2, p. 99,

dx ~ dx dx ^''

Rule VI.—The derivative of the product of two
functions is (ist function x derivative of 2nd func-

tion) plus (2nd function x derivative of ist function).

The result can also be put

I dy _ I dv i_ du

y dx V du u dx'

on dividing (7) hyy = uv.

This theorem can evidently be extended to the pro-

duct of any finite number of functions.

EXAMPLE

y = sin X cos x,

sin X = 1st function,

cos X = 2nd function.

, , -f^ = — sm X sin X + cos x cos x
ax

= cos^ x — sin^AT

= cos 2X.

Differentiation of Quotients of Functions.

7/

Let y = -, where ^, u, and v are all differentiable

functions of x, and v must not be zero.

Then u = yv.



126 APPLIED CALCULUS

By the last result, equation (7), we have

du _ dv dy
dx ~ dx dx

Multiply by - and we get

\ du _ y dv dy
V dx ~ V dx dx

dx
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The equation

Ay _ Ay Au
Ax Au Ax

is formally true since we merely have to cancel out

Am.

Proceeding to the limit,

Lt
Aa; —

>
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Suppose jj/ is a continuous function of x, then

Ay —> o when Ax —> o, hence

Lt r^ X ^1 = Lt m X Lt m
~ dx dy'

Also Lt T^ X X- = i> since x^ x -r- = i.

dy dx

''^'dx= V^ ('°-'

provided -r- is finite and not zero.

Constants in Integration.

(i) Suppose the integral
j
f{x)dx is required, and

that /{x) is given.

This integral is a function of x, <p{x), which has

f(x) as its derivative.

From this it follows that

^^(x) =f(x) (II)

Now, since the derivative of a constant quantity

is o, if (ii) holds, then

^[^(X) + C] = f{x) (12)

Therefore all indefinite integrals must have a con-

stant added to them.

This constant is entirely arbitrary. Its value

depends on the conditions of each problem.
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The constant need not be considered when a definite integral is

taken.

Let fAx)dx = tp(x) + c.

Then P f(x)dx = \ <p{x) + cT' = ^(at.) - 0(*,) (13)

the constant going out in the difference.

(ii) Suppose \c x f{x)dx is required, where c is a

constant number.

[cf(x)dx = Lt {'Ecf{x)Ax\, when Ax —»• o

= c X Lt |2/(a;)Ax).

(See numerical calculation, p. 81.)

.-. jcf{x)dx = cjf{x)dx, (14)

i.e. a constant multiplier (or divisor) can be placed

outside the sign of integration.

Integral of the Sum of Two Functions.

Since ^ {^(a;) + ir{x)} = ^ ^(x) + ^-^(x), by (6),

.'. 4,{x) + \l^{x) = \{^<t>{x) + -^ir{x))dx.

and \-T~\lr{x)dx = i/'(a;).

(D102) 10
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Rule IX.—The integral of the sum (or difference)

of (any finite number of) functions is the sum
(or difference) of the separate integrals.

Integral of Product of Two Functions.

This theorem is highly important, and is known
as "Integration of Products by Parts", or briefly

" Integration by Parts "•

By equation (7)

d , , _ dv du where u and v are differ-

dx^ '
~ dx dx' entiable functions of x.

.•, \u-j-dx = uv — jv-T-dx (16)

Now V =
I J- dx and m =

I t- dx.
J dx J dx

Put w ior -r^, a function of x,
dx '

then, by (16), juwdx = ujzvdx—
j i-r- x jwdxjdx. (17)

Rule X.—The integral of the product of two
functions of x is equal to the first function x in-

tegral of second function, minus the integral of

(the derivative of the first function multiplied by
the integral of the second function).

EXAMPLE

Required Ix cos* dx = j/.

XT • • dv THere u = x, v == sin x, since -=- = cos at, if j; = sm x;
dx
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hence, regarding x as the first function and cos x as the second

function, the rule gives directly

y = * sin j; — / 1 X sin xdx

= X sin x + cos X.

(Check this result by differentiating it. Its derivative should,

of course, be x cos x.)

Derivative of ,«:", when « is a fractional or negative

index.

We have proved (p. 43) that

^(x") = wa;""', when n is a positive integer. (18)

Suppose n is a. positive fraction = -.

Put y = xi, I.e. ^ IS a function of x,

:. y = x".

•••

Ty^y)
X

fx = Tx^^')-

since/ and q are integers, and so (18) applies.

••>-xi
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Suppose « is a negative integer or fraction = — w,

then x-'^x'^ = i.

:.^^{x-x-) = o.

.'. ^"^(a;-") + OTX-"" a;"-' = o.

>-e. ^(x») = nx''-' (19)

when « is a negative integer or a negative fraction.

We have now extended Rule I to make it apply

to any rational index n, either positive or nega-
tive.

Exercise 6

DiflFerentiate the following expressions :

—

1. 2,x^.

2. X^ -^ X^ + X + 1.

3. (x -\- a){x + b), a and b constants.

4. x{i + x^) (i + ^).

5. x-\

6. {x + a)l{x + b), a and b constant.

7. {xl{x 4- i)}", m constant.

8. n/i + x^.

g. {2«a; + x^y^, a and w constant.

10. jc'/n/i + Jf*.

11. tan a;. [Put tan at = —

—

. Also direct from limit,

Exercises, p. 108.]
^"^^

1 2. sec X.
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13. cosec X.

14. cot X.

15. sin 3^.

16. sin 2^x cos 2X.

17. sin (cos x).

18. (a + sin x)j(b + cos iic), a and 6 constants.

19. (a + sin a;) (6 + cos x), a and b constants.

20. Va + b sin ^, a and b constants.

Integrate the following functions of x\—
21. ax^.

0.]

22.



CHAPTER VII

Infinitesimals

" Great fleas have little fleas upon their backs to bite "em,

And little fleas have lesser fleas, and so ad infinitum.

And the great fleas themselves in turn have g'reater fleas

to go on,

While these again have greater still, and greater still, and
so on."

—

Prof, de Morgan.

Infinitesimals.

Up to the present -^ has been defined as one

symbol standing for

and we have treated -3- as a single symbol just as

V is a single symbol.

In applied mathematics and in natural science

generally, "^" (sometimes §) is used in a different

sense, so that dy, dx have definite meanings when
standing separately.

This new usage arises from the fact that when we
are dealing with quantities as distinct from numbers
it is usually easy to see when one quantity is rela-

tively small and small enough to be ignored.

In applied mathematics—indeed in all "concrete"

mathematics as distinct from the mathematics of ab-

stract numbers— mere numbers are not of much
134
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interest. It is not much use a farmer telling us that

the stock on his farm is 100, unless he tells us

whether he is speaking of bullocks or chickens.

Ascending Powers of Ax.

We have found that, if jj/ = f{x), Ay can often be

expressed as an ascending power series in Ax.

For instance, if ;>/ = x*,

Ay = 4x^Ax + 6x\Axf + ^{Axf + {Axf. ...(i)

For any given value of x, the coefficient of powers
of Ax reduce: to common multipliers. Thus, if

X = 2,
'

Ay = 32 A^ + 24(Ax)2 + 8(Axf + (Ax)'. ...(2)

This equation is the exact expression for the in-

crease (Ay) in y arising from an increase (Ax) in x,

when the relation between x and y is y = x*, and x
has the special value 2 (see fig. i).

Now, suppose we are considering change^ in x, of

the order lo"^^ i.e. Ax = io~i^ say.

Ay is then the sum of

32 X 10-" = 32 X lo*" X lo-*"

24 X 10-" = 24 X lo"^ X 10-^^

8 X iQ-'" = 8 X 10" X 10-"=

I X 10-^ = I X IQ-'".

The sum of the last three terms is about i billionth

of the first term.

If the first term (32 x 10'* x lo"^*) measures a
" small quantity "* it is an infinitesimal of the first

order.

* For discussion of this phrase, see p. 27.
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The second term (24 x 10''* x 10*') is an infinitesi-

mal of the second order. It is less than one billionth

of the first order term.

The third term (8 x 10'^ X lo"**) is an infinitesimal

of the third order. It is only one three-billionth

Fig. I

part of the second order term, and is one four-

billion-billionth part of the first term, and is there-

fore quite negligible compared to the first order

term.

The fourth term (i x 10"*) is an infinitesimal of

the fourth order, and is quite negligible compared to

any of the others.

The result is that, in actually calculating Ay as a



INFINITESIMALS 137

practical problem, we need only retain infinitesimals

of the lowest order, provided A:'c is small enough.

In the above case,

y = X*

and ^ = 4^.
dx

^y = [£+/(ax)ax]a^.
-dx

.-. Ajj/ = ^Ax + [/(Ax)A^]A^. ...(3)

It is evident from (i), then, that when Lx is very

small, the important part of Ajk is the \-j-Lx\ part.

The coefficient of the other term, /(Aj£;)Ax, ap-

proaches zero as b^x —> o, and

For this reason, -^ ^x is given a special name,

and is called the differential of y, and when Ax is

small enough to make /(Aa;)A:'c relatively negligible,

Lx is called the differential of x. &y is written for

the differential oiy, and Sx for the differential oi x.

Hence ^y = ^^x, (4)

where 8x is any small increase oix.

We can proceed to the limit with ^x if we wish,

and get, dividing both sides of (4) by &x,

8y _ dy
8x ~ dx

and Lt m = 1^ = Lt (^) (5)
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The term in equation (3), [/(AAr)AA;;]A^, plays no

part in forming the limit of Ay/Ax, for •

Lt [AAx)Ax] = o, (6)
^z —>

and it contributes nothing of any importance to the

change in y which accompanies a sufficiently small

change in x.

It can therefore be omitted, and when it is omitted

the differential or infinitesimal notation is used.

Fig. I shows clearly the principle involved in the

use of infinitesimals.

AjV = RQ = PR tan i/' + SQ

- Jj' + SQ (7)

and SQ/Ax —> o as A^ —^o. Hence we may put

change in^ ~ ^ X (change in jc), ...(8)

when Ax is small enough.

In applied mathematics and physics, it is usually

not considered necessary to distinguish between (S and
d in the notation, dx is often used instead of ?iX

when an infinitesimal change in x is referred to.

The beginner is advised to use one notation:

A for any change—large or small;

5 ,, an infinitesimal change;

and T- ,, the limit notation.

d should not be used except in the limit notation.
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The matter can be concisely put by using the

formal definition of a limit given on p. 93.

Av
If -r- has a limit as Ax
Ax o, this limit is written

dx
Assuming the limit to exist, we must be able

to find a finite positive number yu such that the in-

equality

Ay _ dy^

Ax dx
o < < K

holds so long as

o<\Ax— o\<^L

holds; where k can be any finite positive number
not zero. Now if

Ay _ dy
Ax dx

where e is a positive or negative number, then

(9)

Ay _ dy
Ax dx

.: O <
I

e
I

< k:

so long sis o <
\
Ax

\
< fi.

These inequalities are the conditions that e may
have the limit zero as Ax —> o, therefore if

Lt { -r^ ) exists and equals -r-t

+ e

we may put
^^ _ ^^
Ax dx

where Lt (e) = o.
Ax —>
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Now, in any practical application of numbers

to measure quantities we can always select a quan-

tity q, such that any quantity less than q is

negligible.

Hence, if we make | e |
<

| ^ |
, we can write (9)

% - t Co)

and, by sufficiently decreasing the interval in which

I

Ax
I

must lie, we can always make | e
|
< \q\

^^'^

I

e
I

-^ o as
I

Ax
I

-^ o,

i.e. we write

^ « ^ (11)

when Ax is small enough.

Equation (11) must be read to mean that ^ differs

from ~ by less than the ^arbitrary "tolerance" set

when Ax is made sufficiently small, or, more briefly

but more loosely,

-~- is nearly equal to -j-,

when Ax is small enough.

The "equals" Sign in Practical Calculation.

When physical or chemical measurements are in

question, a slightly different interpretation is put on

the sign " = " from that given to it in pure mathe-

matics. In pure mathematics,

y = P (12)
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means that y is exactly equal to p. The number y is

neither more nor less than the number p, in fact

" = " means xS\aX y and p are identical numbers.

Now, suppose we say that / stands for the number
which expresses the length of a straight line AB in

terms of a unit of length, say the centimetre. If the

line is measured and is found to measure say 10 cm.,

we say that

/ = 10.

But it is almost certain that / does not equal 10 in

the pure mathematical sense. Suppose the line to have

been measured with a centimetre ruler. It is certain

that the length is more than 99 cm. and less than

ID- 1 cm., so if we say that / = 10 in the pure mathe-

matical sense we cannot be far wrong. If, later on,

we found that a possible error of ± o- 1 cm. (which is

± o-i cm. in 10 cm., i.e. ± i per cent) is more than

we ought to allow, then we should measure the

line more accurately, say with a carefully-constructed

travelling microscope fitted with vernier scales. We
might then be sure that the length of our line is more
than 9-99 cm. and less than looi cm. The possible

error in taking I = 10 is then limited to ± ooi cm.

in 10, i.e. to i part in 1000; and so the process can

be carried on, each approximation coming nearer

to the true measurement as the possible error de-

creases.

The difficulty of making any physical measurement

increases seriously as the permissible error decreases.

To measure the line correct to ± o- 1 cm. may take

one minute and require an appliance costing three-

pence. The same measurement correct to + o-oi cm.

may take an hour and require apparatus costing

many pounds ; while, when a high degree of accuracy
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is required, such, for instance, as is attained in the

measurement of base lines in geodesy (i part in

2,000,000 say), the work takes years and becomes an

international matter. Poincare writes: "... this

history (of geodesy) certainly teaches us what pre-

cautions must surround any serious scientific opera-

tion, and what time and trouble are involved in the

conquest of a single new decimal ".

It is unwise therefore to attempt to make a measure-

ment to a higher degree of accuracy than is actually

required. When we write / = 10 cm., we mean that

10 cm. can be taken as equal to /, the length of AB
for the purposes of our problem, and not that 10 cm.
is the actual length of the line.

It is in this sense that we may write, instead of (1 1),

A^ = %Sx = Sy, (13)

i.e. when Ax is small enough, it is unnecessary to

distinguish between Ajj/ and Sy.

Approximate Calculations by Small Differences.

Suppose we wish to calculate the weight of a brass

tube, per foot, correct to 5 per cent, the internal

diameter being 2 in. and the thickness ^V •"•

di, internal diameter, = 2 in.

£?2i external diameter, = 2^V in.

W = 1 2p X (area of cross-section of metal)

= I2pA,

where W is the weight per foot in pounds,

p, the density in pounds per cubic inch,

and A, the area in square inches.
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Let

A be the area of cross-section of tube in square

inches,

Ci, the circumference of inner circle in inches,

Cj, „ ,, outer ,, ,, (fig. 2).

F'g. 2

Then, if ^ is the thickness in inches,
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p is not linown accurately; it varies with the com-
position of the brass, between 0-30 and 0-31.

.'. 0-30 < p < 0-31,

i.e. 0-30 < p < 0-30(1 + ^).

Combining all these inequalities,

12 X 0-30 X 3-141 X 2 X j!- < W
64

<(,.Xo.3oX3-.4.X.xi)(.+jL)(,+_±.)(,+^).

''-(+^)(' + 3-lV)('+^ = (-+^>
If, therefore (12 x 0-30 x 3-141 x 2 x ^-j is taken

as the value of W, we can be sure that the result is

within the permissible error of 5 per cent.

For tubes which are sufficiently thin compared to

the diameter, the weight per foot may be calculated

by W = I2pirdit,

where p is the weight per cubic inch in pounds,

diy the internal diameter in inches,

and t, the thickness in inches.

The exact formula is

W = i2p'^{d^-d^)
4

= 3p7r(^2^ — d^), where d^ is the

external diameter, and £?, the internal diameter

= 3 px(fi?2 + d^ (^2 — '^i)

= \2pir{dx + t)t.

There are undoubtedly many problems which can
be calculated exactly without much difficulty; but
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there are also very many which cannot. Even if

absolute exactness is possibly attainable, it is often

only attainable at the cost of immense labour. To
quote again from Poincare's writings: "There we
meet the physicist or the engineer who says, ' Will

you integrate this differential equation* for me; I

shall need it within a week for a piece of construction

work that has to be completed by a certain date?'

'The equation,' we answer, 'is not included in one

of the types that can be integrated, of which you
know there are not very many.' 'Yes, I know; but

then, what good are you?' More often than not a
mutual understanding is sufficient. The engineer

does not really require the integral (complete solu-

tion); he merely wants a certain figure which would
be easily deduced from this integral if we knew it.

Ordinarily we do not know it, but we could calculate

the figure without it, if we knew just what figure and
what degree of exactness the engineer required."

The above example (p. 142) has shown how, when
the degree of exactness required is specified, the

necessary calculation can be simplified. In the ex-

ample, we reached a formula which gives sufficieptly

accurate results with a slide rule, whereas the exact

formula cannot be calculated directly on a slide rule.

EXAMPLES FROM MECHANICS

I. Find the position of the centre of gravity of a flat parabolic

plate of uniform thickness, shaped as shown in fig. j.

Let AOB represent the plate. Choose the axes as shown in

the figure, OX being the axis of symmetry. By symmetry the

* An example of a "differential equation " will be found on p. 184.

We " integrate ' a differential equation when we find the relation

between the variables from which it arises.

(D102) 11
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C. G. must lie somewhere on OC. Let x stand for the distance

of G, the C. G., from OY; then by taking moments, about OY,
of the forces acting perpendicular to the plane of the plate, we
have p X A X ^ = sum of moments of the forces on the pieces

Y
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Now the effective distance {d) of this strip from OY is given

^^
(x + Ax) > d> X.

.'. d = X -\- XA:tr, wliere o < X < i.

.'. moment of the weight of this strip

= 2p{y + Kiiy)Ax{x + XA^i;).

If M = moment of the portion of the plate OPQ,
AM = 2p(y + kA.j/) (x + 'KAx)Ax

= 2p{xy + KxAy -\- \yAx + KkAyAx]Ax.

Malting the changes all infinitesimals, and dropping infini-

tesimals of second and higher orders, we get
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Now the area of the plate = 2 / ydx
Jo

ft

J

= 2 V4a I x^dx
Jo

= 2V^[|^5]^

= 2V^§/5
= i^/^l
= iCAl.

.; JiCAlx = icKlK

.: X = i I,

i.e. the position of G is such that

OG = f of OC.

2. To find the moment of inertia of a uniform thin rectangular
plate about an axis ofsymmetry. (Compare p. 115.)

Fig. 4 illustrates this problem, Y'Y being the axis about which

Y

X'

b

\/D
Sx

-X-

X

B C

Y'

Figr. 4

the M. I. is required. Take the centre of the plate as origin and
the axes of symmetry as the x andy axes.

Let x be tiie distance of AB, in feet, from the axis Y'Y. Con-
sider the strip ABCD, which is Sx ft. wide. The area of it is
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aSx sq. ft. and the mass paSx lb.,* if p is tlie density in pounds per

square foot. This mass contributes to the M. I. something be-

tween paSx x^ and padx {x + SxY, say paSx (x -\- k SxY, where k is

a positive fraction between o and i. This expression is

paSx(x^ + 2KxSx + K-Sx^),

i.e. paSx x^ + 2paKx{SxY -\- paK^(SxY.

Retaining only the infinitesimal of the first order, we get, it I is

the moment of inertia of the portion of the plate EFBA,

81 = pax^Sx.



ISO APPLIED CALCULUS

Let A be the area of the piston in square

feet.

The average pressure on the piston during the

expansion Av is something between p and p + Ap,

p
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Dropping the second order term,

^W = p?,v, and proceeding to tlie limit,

and W = \''pdv (14)

= work done in expanding from z^o to

»i in foot-pounds.

.*. the work done in foot-pounds = (the area of

AaAB) X /, where / is a scale factor.

This scale factor/ can be found as follows:

—

Suppose the p, v diagram—as a pressure graph,

in terms of v, such as fig. 5 is called—is drawn

to scales

I in. vertically = P lb. per square inch.

I in. horizontally = V c. ft.

Then i sq. in. of area on the diagram is equivalent

to (P X 144 X V) ft.-lb.

Hence the "work" represented by AadB is

(a X P X 144 X V),

where a is the area of AabB in square inches, i.e.

Work done in foot-pounds = (a in square inches) x /
where/ = 144 PV.

Indicator Diagrams.

Formula (14) is extremely important in engineering.

An instrument called an Indicator is used to draw
mechanically a.p,v diagram for the steam on one side

of a piston in an engine cylinder.

A is a small cylinder (fig. 6), B an accurately fitted

piston of I sq. in. (say) in area, C a Spring, D a joint
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by means of which the instrument can be attached to

the engine cyUnder, E a link mechanism by which

the movement of the piston B is repeated at the

pencil G, and F a drum on which a piece of glazed

paper is carried. The drum F is given a rotational

to and fro motion by means of a driving cord H,
the free end of which is attached to the crosshead

Figf.e

of the engine. The string is kept taut by working
against a spiral spring I contained in the drum F.

The motion of F therefore repeats the outward and
inward motion of the engine piston on a small scale;

while the vertical motion of the pencil G, across the

paper on F, repeats the motion of the piston B on a

magnified scale. The pressure in the engine cylinder

is the pressure on the steam side of B. The piston
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B therefore responds, against the spring, to changes

in the cylinder pressure, and the pencil G rises and
falls as this pressure rises and falls.

The pencil therefore traces out a graph like that

shown in fig. 7.

The curve is closed since the changes are cyclic

and steady.

The area enclosed by this curve is by (14) a measure

F'&- 7

of the actual work done by the steam in the cylinder

on one side of the piston.

The appropriate scale factor / is known when the

conditions under which the instrument is used are

known, and hence the work done in foot-pounds

= / X (area enclosed by the curve in square

inches).

Of course any consistent units can be used by
giving different values to /.
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Exercise 7

1. Show that the moment of inertia of a thin rod of

length / about an axis- passing- through one end and

perpendicular to its length is

MP
, where M = mass of rod.

3

Hence find the M. L of a rod weighing lo lb. and 7 ft.

long.

2. Find the position of the centre of gravity of a semi-

circular flat plate.

3. Find the position of the centre of gravity of a solid

hemisphere of uniform density.

4. The period of oscillation of a simple pendulum is

given by /^

Show that the error in T introduced by a i-per-cent error

in ^ is equal and opposite to the error in T caused by a

i-per-cent error in /.

[Find the small change in T corresponding to a small

change in / and in ^. Make SI = o-oi / and Sg- = o-oi^,

and find the ratio of the corresponding small changes

in T.]



CHAPTER VIII

Integration

"Nova stereometria doliorum; accessit stereotnetriae Archimedeae

supptementum."—The Title of the first Book on the Integral Calculus

by Kepler (1615).

Some important methods for effecting the integra-

tion of functions have already been discussed. We
propose to collect in this chapter the more important

methods, and to give some examples of their applica-

tions.

I. By Differentiation.

When the derivative of a function is found, an

integral formula follows at once. E.g.,

-3-(cos X sin x) = cos^ x — sin^ :r

;

.*. j(cos^x — sin^x)dx = cos:!c sin x + c. (i)

c is the arbitrary constant discussed on p. 128.

Sometimes it is easy to guess a function whose
derivative is the given function to be integrated. If

^{x) is the given function and f{x) the guessed

function,

l<j>{x)dx = f{x) + c (2)/«

for^(^) = ^J{x) (3)
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In this way certain standard elementary integrals

are found. Many expedients have been devised for

transforming integrals into simpler integrals which

come within these standard forms. Skill in integra-

tion largely depends on ability to find readily suitable

transformations which make the given integral de-

pend on simpler known integrals. Each success

adds another integral to the list of known forms, but

in spite of the great number of integrals that are now
known, functions still crop up which defy all attempts

at integration. .Sometimes, indeed, it can be foreseen

that it is impossible to express a given integral exactly

in terms of known functions, though we can always

find the value of the integral approximately. Some
of the simpler and more useful rules are given

below.

2. Integration by Substitution.

Complicated expressions to be integrated can

often be simplified by expressing them in terms of

a new variable.

Suppose / d){x)dx is required.
J a

We may suppose jjc to be a function of a new vari-

able 0, provided that the new function of z chosen can

assume all the values of x required in the integra-

tion.

For instance, if I xl^dx is required, we could not put x = sin z

because sin z cannot be g^reater than i.

But we could put x = tan z, because a "sr" can be found to give

tan z equal to any number between i and 3.

It would not simplify the work, in this instance, to do this— the

example is merely intended to show why certain functions are admis-

sible while others are not.
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Let I = \f{x)dx.

Then -t- = fix) = ^(z) if x is a function of z.

Let a; be a differentiable function of z, say 9^(0),

^, dl d\ dx . , V

= f^^)fz

:. I ^ i[,riz)^]dz (4)

This is the transformation formula for substitution.

EXAMPLES

(i) Evaluate I sin {2x)dx.

Put 2X = s.

, dx I

.'. I = jsinz X i k dz

= ^ I sin zdz

= — ^ cos z = — ^ cos {zx) + c*

(ii) Evaluate I sin {mx + w)<«!r, »? and n being constants.

Put mx -\-n = z.

_ z — n
m

J dx I
and -=- = —

dz m

* In all cases an arbitrary constant must be added to an indefinite

integral. It will be understood in future.
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/. I = f/'sin z X -\(iz = - [sin zdz = — — cos «

J \ m) mj m

——? cos (mx + «).m

(iii) Evaluate |

'
rfar, provided — a < jc < + o.

] Scfl — at'

Under these conditions it is admissible to put

.V = asin^, (S)

for sin z may assume any value from — i to +1.

dx
Also -J- = a COBS', by Rule 4, p. 123,

dz

and a^ — x"^ = cfi — cfi Av? z.

.', y/d^ — x^ = a cos z.

:, {
'^^ = (Hz)fdz = '(^LEBEJdz

j \/a^ — x^ J dz J a cos z

= jdz = z.

But z = angle whose sine is -, by (5)

. X= arc sm —

.

a

I
dx

sJa^ — x"^

Example.—Evaluate
\ ^ j^ i

> "^ being unlimited in value.

(Put X = a\.a.nz.) J " + ^

These are important integrals and should be remembered.

3. Integration by Parts.

This theorem has been discussed on p. 130. The
rule is:

The integral of the product of two functions of

X is the first function multiplied by the integral of

the second, minus the integral of the derivative
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of the first function multiplied by the integral of

the second.

I.e.

/{" ^©K ^ "^ - /S^"^^ ^^>

EXAMPLES

(i) Evaluate I x zosx dx.

. \x {Let
I
x cosa: (i!r = I.

The first function is a: = «.

The second function is cosj; = ^- (sia*), i.e. z> = sin*.
dx

X svc\x — / 1 X sinjr dx, since -— = i when u ^= x
J

Hence I = I ^ j- (sin^r) dx

sinxdx, since ,

dx

= X sinAT — I sinx dx

= :f sin* + cos*.

(ii) Evaluate I sin'xdx.

Isin^^rf* = I (sin*) ^
~

^dx

= sin* (— cos*) — I cos*(— cos*)(fj

= — sin* cos* + I
(i — sin^*)rf*

= — sin* cos*+ * —
I
sin**rf*.

.'. 2
I
sin'''*<f* = * — sin* cos*.

/
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4. Integration by Reduction.

EXAMPLE

Integrate / sin''xdx, n a positive integer.

isin'^xdx = \ --j-(— cosx) sm'^-^xdx = I.

Integrating by parts, we have

I = — cosjc sin"-'j: + (« — i) / cos':i; sivi/^'^xdx,

bearing in mind that

— (sin"-'Ar) = (« — i) sin"-^j; cosa;,
dx

by Rule 8, p. 127.

.•. I sin''xdx = — cosjr sin"-'j; + (« — 1) I sm^-^xdx

— (n — 1)1 sin":rrf':r,

i.e. nlsin^xdx = — cos* sin"-'ar + (« — i) lsin""'xrf*,

/"
. _ J cos:t: sin"~':r , n — 1 f • - , j /_\

I.e. lsin"xdx = + Isin^-'xdx (7)

J n n J

This is a formula of redtiction which makes the

integral of sin"^ depend on that of sin"-^.x;, i.e. the

degree of sinx is lowered by 2.

Repeated applications of the formula give any
actual case required.

For instance, if « = 4,

\sin^xdx = 1- ^^Isin^^rf^;.

But jsin^xdx can be obtained by the same reduc-

tion formula, putting « = 2 now.
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/ . „ , cosx sin:K , i f . „ ,

j
sin'xax = h - / sin^jjcox

cos^ sin:x; , i= — + -X.
2 2

.". jsin^xdx = ^[^x — sin^JC cos:)c (2 sin^;c + 3)] on

collecting up the terms.

If the integral is required between o and Jtt,

(hm*xdx = 3 X :^ = 4^
Jo 8 2 ID

from the above result.

This result is a special case of

(km'^xdx = r(«-i)(«-3)(«-5)---i1
X ^,

Jo L «(« — 2) (« — 4) . . . 2 J 2

which is true when n is even. The reader should
prove this direct from the reduction formula (7).

Inverse Trigonometrical Functions.

Such integrals as

I arc sinxdx are usually evaluated by substitution.

Put arc sinx = z,

then sin0 = x.

dx
.'. -5- = cosz.

dz

.'. I arc sinxdx = iz coszdz

= z s'mz + cosz, by Ex. i, p. 159.

Hence I arc sinxdx = x arc sin^c + -v/i — x^.

(D102) 12
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WORKED EXAMPLES

Freedom in integration can only be acquired by working out

a large number of examples. The reader should study carefully

the worked examples already given, and then work through the

set of examples given at the end of the chapter. Practice in

integration is given in Exercise 8, and the reader should do a

few of these from time to time as he reads the rest of the book.

Hints for the solution of the more difficult of these examples
are given in the Answers.

EXAMPLES

I. Integrate the following expressions by the method of sub-

stitution :

—

(i)

(i!)

'^ Vi.

Vl+;

(iii) Va^ — x'^. a > X.

(iv)

(v)

Vl — x^'

I

^ < I.

I + x'^'

I

(vi) , „ „ . X > a.
X \x^ — a'

2. Integrate by parts the following expressions :-

(i) x^ cos.r.

(ii) X cos2Ar.

3. Show by reduction that

(iii) x^ arc sin;r.

/. > X arc sinAr

(i-:i;2)i"

f.
^'

i • - • when n is odd.
5 3n n — 2 n — 4

4. Show that

f sin^^ cos^edd = - si"''-'ecos«^'g^/rJ
[ sinP-^o cos^Ode;

J P + 7 P + <l)

hence, by reduction, evaluate

J
sin*5 cosWdO.
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Exercise 8a

Differentiate the following expressions :

—

ly. X arc sin^ir.1. aVx

2. sin (cos;);).

3. sin3:ir cosaa:.

^ i+x'

5. sin^t: cosj; tan^;.

6. arc tanj;.

7-
^

-

8. Vi — x^ + arc sin^.

9. arc tan(« tanj;).

10. *in!? - tana; + x.

3

\/ i-x
12. arc cos(4^ — 3^;).

. x+ I

13. arc sin —7^.
V2

14. {a + x)'^(b + x)".

15. arc sin ( Vsinj;).

\i + X'

18. arc tan
v/f+ cos*

19. (a'' + x^) arc tan-.

20. tana; arc tana;.

21. arc sec (

—

^ ).

\2X' — I /

22. (a;+ a)arctan. /-— y/ax.

23. arc tan {^^).

|Vi+j;2-i|
24. arc tan

-t; :
)

a;2"+ 1/

26. arc sin
V Vi + a;2^

27. sin'a; cosar.

;V2
28. ^ arc sin -^-^„.

V2 I + j;^

29. a(sina; — cosa;).

30. If J/ = a(3 4" sin^) and x = a(i — cosz), show that

rfy _ Vzflj; — a:'

rfa; X
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Exercise 8b

Integrate the following expressions :

—

I. ax^.

^. {ax + b)\

I

4. x\a + x)i. [Put a + X
= t\-\

5. x^ (a + bx).

, I

(a2 + ;>r2)}*

7. (a*3 + *)V.

8. [Put^-'+ l=*l]

/'
17. /tan'»^</e =

3?(l+ X^)^'

9. sec*:r.

10. :t; sin x.

!!.;»: arc tan x.

12. (a + *J^ + <^^') (* + 2Cx).

13. jr' (rt -|- Jar).

"*• {^^^''

15. ( I — cos ;r)^

16. (aA;» + S)'»a:»-i.

tan'^-''^

-i J

tan«»-» (^rfO.

Prow this result : whence show that

\ta.n"'6de = tan^"-!^ ta.n^-^0 + . . . - (-1)" tane + (-i)»ft

18. X'j{2 + 3^2).

19. (x -\- sin;ir)/(i + cosj;).

20. x*l(i + x'^f.

ar'

22. Show that

/:
sinmji; smnxdx = o, or - >

according as m and n are unequal or equal positive integers.

[This result has important applications in Fourier's Theorem.]

23. Prove example 22 for cosine instead of sine.

24.
I*

sec* Odd = i.
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25. If <p(x) = <t>{a + x), show that

I 4>(x)dx = n I <l>{x)dx.

[Function has period a, whence result graphically.]

ri

26. Show that 0(a) (b — a) < <Kx)dx < <P{b) (5 - a),

J a

if 4>{x) increases steadily from a to b, and is positive.

What is the condition that (t>(x) shall increase steadily from

a to b?

27. Examine 26, when ip{x) decreases steadily from a to b.

28. Examine 26 for the case when ^{x) is negative between

a and b, and when it changes sign between a and b.

29. If ^(x) is continuous, so that the graph of 0(jf) is a continu-

ous curve between x = a and x ^ b, show that

<t-{x)dx = {b — a)<p{a + e(b — a)},

where 5 is a number which lies between o and i.

[This result is known as the Mean Value Theorem.]

30. Find the approximate value of

1

/:
Vi - 1 sin2 e d9.

What is the maximum possible error in your answer?

This integral represents the length of a quadrant of an ellipse,

whose major axis is 2, and whose eccentricity is J.



CHAPTER IX

Mensuration

" The quality of the human mind, considered in its collective

aspect, which most strikes us, in surveyings this record, is its

colossal patience."

—

Hobson on "Squaring the Circle".

Lengths of Curves.

Let the length of the curve AB be required (fig. i).

Suppose y = f(x) is the equation of AB. The
length of AB is required between x = x^ and

Divide ab into 9 equal parts. Erect ordinates

Y
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the curve between P and Q. If ab were divided into

100 equal parts instead of g, the chord PQ would

be closer still to the curve between P and Q, and

the more numerous the divisions the more difficult

it becomes to distinguish the curve from the chord

between any pair of ordinates.

The reader can soon convince himself of this by
doing a little geometrical drawing, and finding

how fine the division must be, for any given case,

for the chord and the curve to become indistinguish-

able.

Fig. 2 shows the portion of the curve PQ on a

larger scale.

Let PS and TQ be the tangent lines at P and Q,
T being the point of intersection of these tangents.

Fig. 2

Let QS be perpendicular to PS and let PQ make
an angle Q with PS, then

chord PQ < arc PQ < PT + TQ
< PT + TS + SQ
< PS + SQ.

••• ' < chord% < cos + sin 0.
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Now as PR —> o, Q —> P, and PQ approaches the

tangent line PT, .•. —> o.

. / arc PQ \ _
•pRZioVchordPQ/ ~ '•

If P is the point on the graph corresponding to x,

PR = Ax.

. Lt f^I^pQ_^ = ,

Aa; —> oVchord PQ/
^°^' arcPQ _ arcPQ chord PQ

PR ~ chord PQ ^ PR '

and if f = length of curve from A to P,

arc PQ = As,

and PR = Ax.

. As ^ arc PQ chord PQ
A^ chord PQ Ax

... Lt (^) = Lt f-^;^) X Lt
(?h2^).

A* —> oVAiic/ ^ _>. o^chord PQ/ ^a -> o^ Ax /

.. 1^ = I X Lt f
t^hord PQ\

£?x ^ _>, 0^ Ax /

But chord PQ = y/{AyY + {Axf.

'• A^ - V' + Va^;-

and Lt
(£h2^) = Lt JT^Wf

Ai -> o\ Ax / Aa -> ' \Ax/
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ds

dx

i.e. ^

- (i)

-ilV'+d)""^ (-)

when J is the length of curve between A and B, in

feet—or any other unit of length which may be used.

Unfortunately, in many practical cases, this integral

cannot be found by elementary methods, and even

in simple cases devices are desirable to simplify the

integral.

We will take one case which can be easily inte-

grated from formula (i), and which is of some interest

physically—the length of the cycloid between two
cusps.

Note on Cycloid.—The cycloid is the curve generated by a fixed

point on the circumference of a circle as the circle rolls without slip-

ping- along a straight line uv. It will therefore consist of a series

of loops like uOv (fig. 3), with cusps at u, v, and so on. The length

of the curve uOv is, then, the length between two cusps, measured
along the curve.

Let 6 be the angle through which the radius QP has rotated in

rolling from R to g'.
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Then Rg' = a0, where a is the radius of the rolling' circle—the

g;enerating' circle as it is called,

g'p' = a sin 6,

p'P' = rt(i + cos fl).

Takings O as origin, OR and a line through O, perpendicular to

OR, as axes of x and y>, then if x and y are the co-ordinates of the

point P' on the cycloid,

y = R^' = a(e + sin d),

X = 2a - a(i + cos 6) = «(i - cos S).

Eliminating 6, we get

y = a arc cos ^-^ h "^(zax — x^). (2)

WORKED EXAMPLE
Find the length ofa cycloid defined by the equation

y = aarc cos
°~^ + '^{2ax — x^)
a

between x = o and x = 2a.

The curve is as sketched in fig. 4.

^ = af (arc cos ^^=-i) + f ( ^(2ax - x^A
dx dx \ a ' dx \ /

To differentiate the first term, we put

a — X
z = arc cos .

a
a — X

cos s =
a

a cos z = a — x.

.'. X = a{i — cos z).

. dx
. . ^- = a sin z.

dz

. dz _ I _
'

' dx a sin z

.'. a 4- (arc cos ^^1^) =
dx\ a /

V«a-



MENSURATION 171

For the second term, we get

^ (
-Jiax - x') = I X '

dx 2 \l2ax — x^
X (2a — 2X')

V2

Adding, we get

dy a

dx

Fig. 4

'sizax — x^
+

Vzax — x^

^2ax -



172 APPLIED CALCULUS

By (i), the integral giving the length we require is

U'
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and Ay and A^ -> o as A^ —> o, since x = f{i),

and y = <p(i), and both f{i) and <p{i) are continuous

functions.

. Lt (^) = Ax^oVAf)

^ At -> qVA^/

<^ _ dytdx
dx ~ dtl dt'

= /{V-^(f/g)'>

EXAMPLE

Tofind the perimeter ofa circle.

With the origin and co-ordinate axes, as sliown in fig. 5, the

co-ordinates of P are

y = a sin 6,

X = a cos 0,

where a is the radius of the circle.

Our / is here 6, and

g = g = acose,

1 dx dx . n

^""^Tt^dd^-"^'''^'

^= " COSg_ cote,
afcr — a sin a
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and -775 = — a sin 6.
au

= I
-J- X (- a sin e)de

J sin d

= - afdd.

When X = o, 9 = -; when x = a, 9 = o.
2

the length of a quadrant is-Hr--
the perimeter of the whole circle is zira (5)

Y

Fig-

5

The student should now rework by this method the problem of

finding the length of the cycloid.

Areas.

Let AB (fig. 6) be a portion of a curve whose
equation is ^ ^ ^^^^^

and let the area under AB (AabB) be required.
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This area is

j
ydx. .(6)

The problem of finding areas is therefore a direct

problem of integration.

Y
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This integral has been given on p. 162, Ex. i (iii). It is

/:

+ — arc sm - I.

L 2 2 oj

+ — arc sin
2

xj

\ the area of the quadrant = -^ ^ I

_ irab
~

4
'

and the area enclosed by the ellipse is irab (7)

Y

P

Fig. 7

Volumes of Solids of Revolution.

Suppose the volume of a figure (fig. 8) like ABCD
is required, which is enclosed by two parallel planes

and a curved boundary which is everywhere perpendi-

cular to the end planes. The base can be divided

into unit areas and includes, say, loj of these. If

the planes are 9 units of length apart, the volume
is clearly io| x 9 units of volume, i.e.

volume = area x height.
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It follows that the volume of a cylinder is the area

of the circular base multiplied by the length of the

cylinder.

Fig. 8

A surface of revolution is the surface generated by
a curve as it rotates about a fixed line in its plane.

Thus, if AB (fig. 9) rotates about ab so that every

point in AB describes a circle whose plane is per-

pendicular to OX, and whose centre lies on OX, the

surface swept out by AB is a surface of revolution.

Consider the volume enclosed by the surface formed
by the revolution of AB (fig. 9) about OX and by the

end planes x = x^ and x = x^.

Y
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Choose the origin and axes as shown. The dimen-

sions shown on the figure then follow.

Let V be the volume AA'C'C between the planes

X = Xf, and x = x.

Then the increase of volume, AV, in going from

a; to :« + Ax lies between -ny^Ax and ir^y + AyfAx,
i.e., for the figure taken,

iry^Ax < AV < iriy + AyfAx.

AVvy < ^ < -^{y + Ayf.

t-^o\AxJ
Try,

I.e.
dx

= iry^.

/. V = ttI y^dx .(8)

WORKED EXAMPLE
J^ind the volume of a sphere.

The volume of a sphere is enclosed by the surface of revolution

of a circle about a diameter.

Fig. lo

Let O, the centre of the sphere, be taken as origin, and OX
as the axis of revolution (fig. lo).



fa= 27r
I

(a

Jo
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The equation of the revolving circle Is

^•i -|-j/2 = fl2 vjriiere a is the rad. of sphere.

.•, _y = Va^ — X-.

Let the circle spin about axis OX, then

vol. of sphere = 2 X vol. of ^ sphere

ra
= 2 / TryVji;

Jo

x^)dx

/a ra

c^dx — 27r
I *-Va;
y

= 27rl <j^x — \x? I

Vol. ofa sphere, radius a, = fTra^ (9)

Units.

The formulce in this chapter have been given with-

out specific units. This procedure has been followed

because the question of units in mensuration is very

simple.

Lengths can be in any unit [L] of length—say the

inch. Areas are then measured in [L^] units of area

—say square inches, and Volumes are measured in

[L^] units of volume—say cubic inches.

Exercise (\

1. Find the length of the semi-cubical parabola j/^ = aifi

between x = o and x = I, y being positive.

2. Find the length of the curve y^ — ax^ between

X = o and x = I,

y being positive.



i8o APPLIED CALCULUS

3. Find the area above the x axis, included between

the curves y^ = zax — x^ and y^ = ax.

4. Plot the curve

^" = ^'(Jt5) '^^'^^ '^ = '°'

and find the area it encloses.

5. Find the area between the OX axis and the " witch "

2a
y = —s/2ax — x',

between x = b and x = a (a > b > o).

6. Show that the area contained by the curve

j^ = Ao + \x + A^^ + A^x^

the OX axis, and the ordinates at x^ and x^, is given

accurately by
Area = - (A + 2B + 4C),

3

where A, B, C, and 5 are obtained as follows:

Divide (x^ — aTq) into an even number (n) of equal

parts, each equal to s.

A = sum of the end ordinates

;

B = sum of the other odd ordinates (3rd, 5th, &c.);

C = sum of the even ordinates (2nd, 4th, &c.).

[Take n = 2, then prove the rule by repeated applica-

tion of this case.
]

This rule is known as Simpson's Rule.

When the rule is applied to find

I
ydx where V = f(x),

«0

the error, if any, is due to the deviation of /{x) from an

expression of type,

Ap + A^x + A^^ + A3JC8,

between the limits of integration. This deviation is

usually quite small.
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7. Find the area of the curved surface of a cone, of slant

length / and radius of base r.

8. Find the area of the surface of a sphere of radius r.

9. Find the volume of a cone of height h and radius of

base r.

10. Find the volume of the cap of a sphere of radius r

and height h.

11. Find the volume of a paraboloid of revolution of

height h and radius of base r.

12. Find the volume of a prolate spheroid of 2a major

diameter and 26 minor diameter.

13. Find the volume of an oblate spheroid of 2a major

diameter and 2b minor diameter.

14. Find the area of the surface of a sphere lying be-

tween two parallel planes distant a apart, the radius of

the sphere being r.



CHAPTER X

Successive Differentiation

"... an ancient tale new told

And in the last repeating' troublesome."

—

KingJohn.

We saw in Chapter I that, if we start with a

function of x, given by

y = /H,
we can usually differentiate f{pc) and obtain a new
function of x, y}r{x), which is called the derivative or

derived function. It is usual to denote this function

by an accent, thus /'(x) is written for i/'(^)> i-^-

^/(-) =/'(-) (0

This is, of course, a symbolic equation, and does

not have any specific meaning until we specify /(x).

^f
fix) = ^, fix) = 4^,

and so on for other functions.

Now, there is no reason why we should not try

to differentiate the new function just as we did the

original one.

For instance, if

f{x) = x*,

/' (x) = 4X^, and

^(4^) = 12^^
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Equation (i) then gives

We can denote the new function

^f\x) byf"{x)

in conformity with the notation /'(^), so that

i{iM-f"^^^ (3)

In the illustrative case above /"(a;) would be 12^^.

As a matter of notation, we can write -r-ifix) for

hence

^2/W = /"W (4)

This equation is merely a matter of notation. We have not said

that —^ ~ ^ ^ ~j~' T^"'^ equation would hold if dldx were a sym-

bol for a. number, but it is not. It is a, symbol for an operation,

see p. 40.

f"{x) is, by convention, the notation we use for the

function obtained by differentiating /(;<:) twice.

The function f {x) is called the second derivative

oif{x).

In the same way we can express the third derivative

either as ^3.,

goras/"'(^),

and the «th derivative either as

5^; or /W(a;).
dx'^ ' ^

'
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This process is what is known as successive dif-

ferentiation.

Sometimes it is convenient to use the following

notation :

—

the ist derivative is written ^j,

M 2nd ,, ,, jVai

>> nth. „ ,, yn.

•(5)

WORKED EXAMPLES

1. Find yn, ify = sin(ax-\-b).

y.^^ = a cos (ax \-h) = a sin ( a:«r+ 5+ -),

j/j = f^ sin \ax + 6 + — ).

j/j = a^ sin (ax + S + 3EV

and yn = a" sin ( aa: + ^ + — )•

2. ^^ = a:i^ sin x, prove that

We are given jv = a^ sin x.

.'. y.^ =1 a sin ar + o:r cos Jf,

and j/j = 2a cos x — a;r sin :r.

.*. .T^2 — 2a;r^ cos x — aafi sin *,

—2xyy = — 2a;i; sin x — 2ax^ cos x,

x^y = flA^ sin x,

2y = 2a:c sin x.

Adding, x^y2 — 2xy^ + x'^y + zy = o,

i.e. x^ -j^ — 2X-^ + (x^ -\- 2)y = o.
UrX dX

This last equation is called a differential equation.*

* For some further information on differential equations, see p. 248.
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A solution of it is clearly y = ax sin x, for this

value oi y satisfies the equation.

3. Suppose f(x) can be expressed as the sum of a
series Aq + A-^x + Aj^x:^, wliere Aj, A,, and Ag are

constants. It is required to express Ao, Aj, and Ag
in terms of derivatives of any orders which may be

necessary.

Put f(x) = Ao + AjX + A2X^ {a)

then /(o) = A„.

Differentiate equation (a), then

f\x) = A1 + 2A2A; {b)

.-. /'(o) = A,.

Differentiate (3), then

/"(^) = 2A,.

.-. /''(O) = 2A,.

•••/U) =/(o)+/'{o)^+4^^^ W

We have thus expressed the function as a power
series in x, the coefficients of the terms of which de-

pend on the values of the successive derivatives of

f(x) sX X = o. Thus, if

/(.r) = {a-^x)\

then f'{x) = 2(a -\- x),

and /"(x) = 2.

.: /(o) = a^

/'(o) = 2a,

/"(o) = 2,

and (a + x)^ = a^ + 2«.r + :if2 on substituting these values of

_/(o), f'(o), and /"(o) in equation (c).



i86 APPLIED CALCULUS

The appearance of the higher derivatives in

(a) Differential Equations,

and (i) Series,

should be carefully noted. (See Exer. lo.) They are constantly ap-

pearing- in these subjects, and a clear idea of their nature and of why
they appear is essential.

Exercise 10

1. Let y = ji^ + jc^ + jf^ + ^+i.

Show that —^ = o.

2. \iy = x^ sin ax, a being constant, find^g.

2,. \i y = sin mx cos nx, m and n being constants,

find y^.

4. Prove that the wth derivative of x^, when » is a posi-

tive integer, is n\ (i.e. factorial n = n{ii — i) (« — 2)

. . . 2.,).

5. \{y = A sin mx + B cos mx, show that'

g + ^^^ = o.

where m is a given constant and A and B arbitrary con-

stants.

This is a most important result, and should be remem-
bered. It is the differential equation of harmonic motion,

and is perpetually occurring in physics and engineering.

6. Show that tan x satisfies the equation

dx^ dx

show that ^ = (-i)» 1.2.5. . .«;c-(» + i)

dx^ ' ^

= (-i)"w! AT-C + i).
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8. Uj> = A + Ba; + C;«;2 + D^ + . . . Njc", n finite,

show that A = j/^,

\dxJo'

C = JL (^) ,

1 . 2 \dx^/o'

N = -Lf^V

where the suffix o denotes that the value of each deriva-

tive is to be taken at x = o.

[Differentiate y = A + Bx + Cx^ . , . successively,

and put ;<; = o in the equations

^ = B + 2C^ + . . .,
ax

&.C.]

9. We can therefore write (Example 8),

2! 3! «!

[/W(o) stands for the value of -^, when x is put equal

to zero], provided /{x) can be expanded in a finite ascend-

ing series of powers of x.

f/n + 1 1;

The necessary condition for this to hold is that <,

and hence all higher derivatives, must be zero.

Examine the case wheny(ji;) = x^.

10. Put x = a + y in the expansion in (9) where a is a

constant, and find the expansion for/(«+_y) in powers
of ^, by the method of p. 185.

11. Show, by using the expansion found in (10), that

{a + x)^ = a* + ^a^x + 6a^x^ + ^ax^ + x^.

12. If _)' = (i 4- jf + x^y, expand y in ascending powers
of ^.



CHAPTER XI

Curvature of Plane Curves

" Curvature is the ' moreness ' of slope per inch of ' go forward '."

Wp shall suppose that all the curves discussed

in this chapter lie in one plane—the plane of the

paper.

A curve has, as a rule, a definite direction at every

point in it, and, at any particular point, may be said

to " point " in a direction which is the same as that of

the tangent to the curve at that point. The direction

usually changes from point to point, and the tangent

line rotates as we move along the curve from a

selected initial point.

If J is the distance of the point in question from

the initial point, measured along the curve, and ^
the angle the tangent at this point (s) makes with

any fixed line in the plane, then

is a function of J, (i)

and -^ is the rate at which changes with j at the

point (s) of the curve at which it is calculated. This

derivative will in general vary from point to point.

Deviation.

It is convenient to have a word for the total change
in direction which takes place as we go from one



CURVATURE OF PLANE CURVES 189

point on the curve to another. Thus, in fig. i, if

AQ, the tangent at A, is taken as the datum line, then

yfr is the total change of direction between A and B,

where i/r is the angle at which the tangent at B cuts

Figr. I

AQ. We will call the total change of direction the

deviation, then,

in fig. I, the deviation from A to B is y^r.

Rate of Change of Deviation.

Suppose we measure the length of the curve itself

from A (fig. i). Select any point P between A and
B, and draw the tangent at P (MN). The angle ^
at which this line cuts AQ, the tangent at A, is the

deviation between A and P.

Let J be the length of the curve AP, then
d^
ds

measures the rate of change of 96 with i- at the

point (s) (see p. 65), i.e. it measures the rate of

change of deviation with the distance along the curve

at P.

We will now seek a geometrical meaning of d<plds

when the curve in question is a circle.
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Curvature of a Circle.

Let ABC (fig. 2) be any given circle of radius r.

Draw the tangent at A, AQ. Let O be the centre

Fig:. 2

of the circle. Join OA. Select any point P on the

circle. Draw PM the tangent at P, cutting AQ at

an angle 0. Join OP.

Since PM x OP,
and AQ x OA,

the angle between PM and AQ must be equal to the

angle between OP and OA.
Let this angle be 6 radians,

then <p = d.

But, by (5), p. 102, if we measure the length of the

arc of the circle from A, so that the arc AP is s, then

s = rd

= ftp.

* = 0'.

r being the constant radius of the circle.
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• # - i (2)

.e.f..he,ec,p.ca,on.e.d<„.of.h^eci.,e.

The deviation per unit length of arc \-?) is there-

fore constant for a circle, and equal to the reciprocal

of the radius of the circle. This quantity—the devia-

tion per unit length of arc—is called the curvature.

If we define " curvature " in this way, the curvature

of a circle is the same at any point on it, and this

conclusion is in accord with the general meaning
we attach to the word "Curvature" when we use it

in an ordinary way, with no thought of its precise

mathematical definition.

Curvature of Plane Curves.

The geometrical meaning we have found for dt^lds

by considering a circle leads to a general definition

of curvature which is applicable to any curve.

d(})lds is the "curvature" of a plane curve at

the point s.

Radius of Curvature.

The reciprocal of the curvature of a plane curve at

any point on it is called the radius of curvature at

that point.

It follows from equation (2) above, that the radius

of curvature of a circle is simply its radius.

Both the curvature and the radius of curvature vary
from point to point along the curve ; it is only in the

case of a special curve—a circle—that the curvature

and the radius of curvature are constant from point

to point.
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Circle of Curvature.

Let A be any point on a curve CAB (fig. 3), PQ
the tangent at A. Draw AN the normal at A.

From A mark off AN, the radius of curvature.

The point N is called the centre of curvature. With
N as centre, describe a circle, radius NA. Then this

N

Q
Fig. 3

circle and the curve AB have PQ for a common
tangent, and the same curvature at A.

The circle is called the circle ofcurvature at A.
Usually, the circle of curvature cuts the curve at

the point A, lying between the curve and the tangent

on one side of A, and inside the curve on the other

side of A.

That this is true, may be seen by considering

a family of circles touching the curve at A, and
therefore having their centres on AN. If a centre

be taken between A and N, the curvature of the

circle will be greater than the curvature of the curve

at A, and the circle will therefore lie wholly inside

the curve near A. If the centre of the circle be
taken beyond N, the curvature of the circle will be

less than the curvature of the curve at A, and hence
the circle will lie wholly outside the curve near A.
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If the centre of the circle is at N, the circle will be

inside the curve on that side of A towards which the

curvature of the curve decreases, but outside it on the

other side of A.

At a point where the curvature is a maximum or a
minimum, the circle of curvature does not cut the

curve.

The reader is advised to verify these statements,

with the help of a pair of compasses, on an actual

diagram. He will soon be convinced of their truth,

and will find that they give a good method for finding

the centre of curvature.

Transformation of Curvature Formulae.

-T^ is not readily calculated, as it stands, as we

usually have the equation of the curve in x, y co-

ordinates.

To transform d<f>lds to x, y co-ordinates.

Choose axes as shown in fig. 4.
(D102) 14
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Then tan <t>
= , >

dx

^"'i'f^'^^-"^
= V'l + tan^0

= sec<#>.

Also, by differentiating

tan <^ = -^, we get

dx dx^

, , d^ d<i> ds I ,Now -J- = -J- -r = - sec 9,dx ds dx p

when p is the radius of curvature at P.

sec* <i>
=_ aoif^o fl^ .^ ^ .

p dx^

Also sec^ <^ = I + tan^ <^

•
J
- g/[' +

©']' <*

= curvature at P (x, y).

Sign.

The right-hand side of equation (3) may be taken

with the positive or negative sign, as it involves

the square root of Ti + i^) 1 , which is always

positive.
^
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The correct sign to use can be easily seen from the

shape of the graph, thus, in fig. 4, for instance, we
have

i = ^
p ds

and in going from P to Q the tangent rotates in the

counter-clockwise direction, hence A</> is positive,

and, if we measure j in the direction from P to Q,

Aj is positive, hence A<t>/As is positive and must
P

be positive, so we take the positive sign with

g/[-

+

m'f
WORKED EXAMPLES

I. Find the radius of curvature of a parabola x^ = ^ay at the
vertex (o, o).

Fig. s shows the graph of the given parabola.

Y
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{ +©?
I

2a

(+5)
%\\

2ai

(4a2 + :^)f

= — when X = o.
2a

,'. p = 2a when x = o.

Geometrical Treatment of Curvature.

Let PQ be a portion of a curve AB (fig, 6).

Let PD be the tangent at P, and QC the tangent

at Q. Let C be the intersection of the tangents at P
and Q.
Through P draw PO ± PD, and through Q draw

QO JL QC, and let these lines meet in O. Let the

tangent at P and the normal at Q (OQ produced)

meet in D.

Then .=i:iOPD has a right angle at P.

Draw PE parallel to CQ, meeting OQ in E.

Let the angle POQ be A<p, and the arc PQ, As.

Let OP be denoted by r.

We will suppose ^, the deviation, is a continuous

function of s, the length of the curve from A.
Then, no matter what pair of values, ^, s, we take

A<^ -> o as Aj -*• o.
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It is evident from the figure that

PD > PC + CQ > Aj > chord PQ > PE.

/. PD > Aj > PE.

_L < i_ < J_
FD As PE'

But

Fig. 6
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Now, let P remain fixed, and let Q move up
towards P, so that As —> o, then

Lt r- r^l = Lt (i) X Lt (-^).
A. —> oLr tan A</«J a« —>. o\''/ a« —> ovtan A4>/

and as Aj —> o, A^ —> o.

... Lt (-^) = Lt (-^i~^ = I, by p. io6.
A, _>, o\tan A<^/ A* -). oVtan A^/ •'

*^

., Lt P -^1 = Lt (i).

AS _> oLr tan A</>J a« —> o\^/

Similarly,

Lt r- -^1 = Lt (i)
As -> oL^ sm A<pJ AS —> oV'^/

by using the formula (ii) on p. io6, and

j^^
A^ ^ ^_

AS —>. 0^ (i^'

Hence, since the bounds in the inequality (a) both

have the same limit, viz. Lt ( -),
AS -^ o\r/

... f = Lt (i)
as As —>. 0^''/

= As^o(i) (4)

Le. c?j/rf0 is the value of the limiting length to

which OP approaches, as the length of the arc,

PQ, between the points at which the normals OP
and OQ are drawn, shrinks towards zero.

This length is the radius of curvature of the curve

at P, for we have defined the radius of curvature at

P as the reciprocal of the curvature, d4>lds.
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If As is sufficiently small we can write

Ss = pS4>, (5)

with sufficient accuracy for all practical purposes.

Total Length of a Curve.

The equation j

enables us to express the total length of a curve

between any two points A and B, as

.(6)

where <^o is the deviation at A and <^ atj B.

If we measure the angle <^ with reference to the

tangent at A, <^o
= c.

pcl4>.
J

(7)

Graphical Methods.

A graphical example will help to crystallize the

conclusions so far reached.

Draw any smooth curve ACDB, about 12 in. long,

on a sheet of drawing paper.

Step off points Pj, Pa, P3, &c., with dividers set

with the points J in. apart. Draw the chords AP^,

If these chords are practically indistinguishable

from the given curve, we can take the length of the

curve between any pair of points as the length of the

chord between the points.

Draw tangents at A, Pj, Pa, P3, &c., and draw lines
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through A, Pj, P^, Pg, &c., perpendicular to these

tangents, each to each.

These tangents must, in general, be drawn by eye. With care,

they can be drawn with fair accuracy.

These straight lines are the normals to the given

curve at the respective points. Let the normals at

A and P^ intersect at Qj. Measure PiQi; then the

length of PiQi is, approximately, the radius of curva-

ture at Pj. Strike the arc APjPg with Qj as centre

and radius PiQi. This circular arc should be indis-

tinguishable from the actual curve between A and Pj,

if the length PiQi is a good approximation to the

true radius of curvature at Pj.

Plot this value of p on a graph of p in terms of

s; this is the value of p for i- = chord APj, if we
measure the length of the arc from A.
Repeat this process for each of the points Pg, Pj,

P4, . . . P„, and plot the values of pi, p2> • • • /»« in

terms of J. See fig. 8.

A curve giving the radius of curvature (p) for given

values of s, between Pj and P„, is thus obtained.

In plotting- this graph, meantime omit the values of p at the end
points A and B, as these points require special treatment, since the

curve begins at A and ends at B, and the curve does not have an
ordinary tangent at these points.
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This curve (fig. 8) shows clearly how the radius

of curvature changes as we go along the curve. At
certain values of i- (OEi, OE2) the radius gets very

+p

Fig. 8

great, and changes sign in the neighbourhood of

these points. This means that as the corresponding

points El, E2 (fig. 7) are approached and passed, on
the actual curve ACDB the deviation of the curve
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ceases to increase (decrease) and begins to decrease

(increase). We can avoid these very great values of

p by plotting, not p, but -, i.e. by plotting curvature

and not radius of curvature.

The curvature can be obtained from flg. 7 directly.

Suppose A^ is the ang'le between the tangents at Pi and P:.

Then the deviation in traversing the distance PiP: is A^i, and tlie

average curvature between Pi and Pj is

(
"^

j radians per unit length.

If the step P1P2 is small enough, this average value may be taken

as the value of the curvature at Pi.

If P1P2 is i in., for instance, then the curvature at P] is approxi-

mately

I -X? 1 = 2 A^i radians per inch.

The angle (A0i) is easily measured in radians by striking the arc of

a circle of radius i in. with the centre at the point of intersection

of the tangents at Pi and Pj. Measure the arc of this circle which

is subtended by A0i; then, if 5i is the length of this arc in inches,

A(^i = Si.

The chord corresponding to the arc S, is sufficiently nearly equal to

the arc Si, if the angle A0i is sufficiently small, as it will be, if the

steps PiPj, P2P3, &c., are sufficiently small.

The curvature at P is therefore given approximately by

- = (2 X chord Si) radians per inch,

P

in this instance. If the steps P1P2, PjPs, &c., are all equal, the curva-

tures at successive points Pi, P2, P3, &c., are proportional to Si, S3,

S3, &c.

In fig. 9, - is plotted from fig. 8.

The work can now be checked by integration.

Let T be any point in the graph of - in terms of
P

s (P in fig. 7 corresponds to this point).
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The area shaded, reckoned positive when above the

axis and negative when below it, is

J OV.P
But

'op,P
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to the curve, and even when we do, the finding- of curvature, analyti-

cally, is often a tedious proceeding-. But, as a compensation, the

analytical method is theoretically accurate.

Physical Applications.

We shall conclude this chapter with some examples

of physical applications of the preceding theory.

I. Motion in a Curve.—(a) Velocity.

Suppose a particle P moves on a curved line AQ.
Let s denote the distance of the particle, measured

along the curve from some selected point A, so that

f is the length of the arc AP.

Fig. lo

Let the co-ordinates of P be x, y.

Suppose the particle moves from P to P' in time

M.
On p. 57 we discussed the average velocity of a

rectilinear motion. In rectilinear motion there is no
change in the direction of motion except such as can

be dealt with by the sign of the speed (or magni-
tude) of the motion. The speed is positive when in
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one direction, and negative when in the only other

possible direction—the opposite direction. In general,

the direction of a velocity must be specified, as well

as its magnitude, just as the direction of a dis-

placement must be specified, as well as its amount.

A uniform velocity must therefore be not only con-

stant as regards its speed (magnitude), but must also

maintain a constant direction. With this extended

idea of uniform velocity, we can deal with the velocity

of a particle on a curve.

,

The average velocity between P and P' is evidently a velocity

of magnitude
/chord PP\

in the direction 6, the angle 9 being the angle PP' makes with

the OX axis.

At P draw the tangent, cutting OX at the angle 0.

Now, let iU —> o. As A^ — o, the chord becomes infini-

tesimal, and the chord PP' and the arc PP' differ only by infini-

tesimals of higher order than the first, so we may put 8j instead

of PP', when A^ —> o. Further, as A^ -> o, fi —> <)>, the

direction of the tangent at P. Hence

Lt
(PP') = %

Ae y 0^ A< / at

and Lt {6) = ^,
At —>

and these limits define the instantaneous velocity of the particle.

The instantaneous velocity of the particle at P
is ds\dt, and its direction is that of the tangent

at P.

(b) Acceleration.

Choose the tangent and normal at P as axes, as shown in

fig. II.

At P, let the velocity be v along OX, and at P', (z» -f- Ad) along
TP', the tangent at P'.
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Tangential Acceleration.

The component of {v + hv) alongOX is (v + Az>) cos ^<t>. Hence

the acceleration at P, along the tangent at P, (/j), is given by

f _ T. Viv + At)) cosA^ — v"]

•^' At^oL A^^ J-

Now, I > cosA0 > I — i(A<^)^ seep. 105.

.*. we can put cosA^ = i — ^/c(A0)^,

where k is a positive fraction.

. (v + Att) cosA0 — V _ (v+^ Av) ( i
— ^ k(A^)') — v

At
'

At

_ v+ Av— ^ /ro(A^)'—^ KAv(Atl>Y— z;~
At

+ Av

Fig. II

If we retain only infinitesimals of the first order, this expres-

^'°" &'^«^
(^ + At,)cosA^-z> _ At,

Lt I
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Normal A cceleration.

Now, resolve (f + Azi) along the normal at P.

The normal component is [v + kv) sinA^. Hence the normal

acceleration at P is

/• = Lt r(^ + Ap) sinA0'l

" At -> oL bd J

_ T . Til + Ax» sin A0 A0 AjT

At —> oL i* A0 At A^J'

Taking the limit of each of these four products in turn, we get

Lt {"Jr^\ = I,

At —> oV V I

Lt (v) = V,
At —>

Lt CilE^) = .,
At —> 0^ A0 /

Lt ( T^) = -, the curvature at P,
At —>. oV Aj/ (0

and Lt (^) = I = z-.

At > o^Ar/ ar

•'• /n = I X n X I X - X zi = -.
P />

Hence the normal acceleration is the square of the speed

divided by the radius of curvature.

The results are

:

, ,,

f _ dv _ d^s
•'' ~

~dt
~

dfi'

p

There is therefore always a normal acceleration

when a particle moves along a curve. There is

also a tangential acceleration if its speed changes
from point to point.

The normal acceleration arises from the curvature

of the path, and therefore from the change of direction



2o8 APPLIED CALCULUS

of the motion ; the tangential acceleration from the

change in speed.

Example.—A particle moves at a uniform speed round an

ellipse. Find how the normal acceleration varies from point to

point.

Let the centre of the ellipse be the origin, the major axis the

OX axis, and the minor axis the OY axis ; then (see fig. 4,

p. 9) the equation of the ellipse is

S+P='' (9)

where a is the semi-major axis and b the semi-minor axis.

Equation (9) gives
jr _ x'

Differentiating both sides with regard to x (y being a function

of :>;), we get ,
' " 2ydy__2x

Fdx~ ^"

. dy b'^ X
" dx a^ y

and ^ = - ^'i - ^(-}-'t\
dx^ a^y a'' V y^ dx)

= _ il _ ^(- 1 X - - -^
a^y a^ V _j/' a^ y)

c^V L a^yUly \. ay'.

_ _^ ray -I- 5V
[

a^y L a^y'^ J"

a^yi -j. l^x^ = (^jfl by equation (g).

• ^ = — Z ^
dx^ c^y c^y"^

ay
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Now, i = ^___byequation(3), p. 194.

• I _ ay

a*4*

If the speed of the particle is v, we get

^" ~ (^^vTsM*

and this acceleration is directed towards the interior of the

ellipse.

At the end of the major axis (a, o)

/I - -p-'

and at the end of the minor axis

^^ ~ ^•

The normal acceleration anywhere else {x, y) is given by

equation (10).

The tangential acceleration is zero as — is constant, by

hypothesis.

2. The Bending of Beams.

Let AB be an I girder bent in one plane by forces

in that plane, as shown in fig. 12 (a), and supported

by knife edges at A and B. Choose rectangular axes

as shown in the figure.

Let 00"0' be the line passing through the centroid

of each cross-section of the girder. This line is called

the axis or centre line of the beam.
(D102) 15
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Suppose the cross-section of the girder is as shown
in fig. 12 (b). When the girder " hogs", filaments of

material originally parallel to the axis (supposed

Fig. J2

initially straight) stretch if they are above the axis

and shrink if they are below it, provided the axis

itself does not stretch nor shrink.

The portion of the beam to the left of PQ is held

in equilibrium by the applied system of forces acting

on that portion, plus the stresses acting in the cross-

section PQ, arising from the other portion of the

beam.

These stresses can be reduced to

(i) a force T, tangential to the axis;

(2) a shearing force N
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—these forces acting at the centroid of the cross-

section; and

(3) a couple M.

These three quantities can be found by considering

the statics of the portion of the beam on the left of PQ.
The stress system at any cross-section, distant j from

O (measured along the axis), is therefore determinate.

One of the problems we often wish to solve is to

find the equation of the deflected axis. This equation

will clearly depend on the dimensions and the elastic

constants of the beam. To determine it we have to

express the couple M—the bending-moment, as it is

called—in terms of the dimensions of the beam and
the elastic constants. We shall suppose that T is so

small that the axis itself does not change sensibly

in length.

Let C be the centre of curvature of the axis at P.

Consider a small length of the beam Ss (PQSR),
and let us calculate what happens to the filaments of

material distant jj/ from an axis through the centroid

of the section and perpendicular to the plane of

bending (fig. 12(6)). Let ^S be the cross-sectional

area of the filament at y.

The original length of this filament is Ss; the

stretched length is (p + j')S'i>, ignoring infinitesimals

of higher order than the first.

But Ss = pS<i> to the same order of accuracy. Hence
the strain of the filament is

(,P + y)S<i> - pS<i> ^ y_
pS<t> p

If E is Young's Modulus, the stress in this element

^2-. Hence the tension in it is —^S.
P P
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Taking moments about an axis perpendicular

to the plane of bending and passing through the

centroid of the section PQ, we see that the contribu-

tion this filament makes to the total couple is

P

The whole couple is therefore

i^-^-lP J -I P

where w is the thickness of the beam at y (fig. 1 2 (b) ).

.-. G = -f^'wy^dy,
pJ -?

where G is the total couple.

But I " Tvy^dy is the moment of inertia of the cross-
''

.

section, assuming it to be of unit surface density.

Calling this quantity I, we get

G = EI.

P

This couple must be numerically equal to M.

.-.
EI = , M,
P

dy
dx^

'him
i.e. EIt ^^r-rr-, = ± M.

If the deflection is never very great, dyjdx is small



CURVATURE OF PLANE CURVfiS 213

relative to unity, and much more is {dyjdxf. Hence
we can neglect (dy/dxy and put

EI^ = ± M.

Sign.

The sign to be given to the right-hand side of the

equation ^2^

dx^

is settled by a convention.

If the beam bends as shown in the figure, the

bending-moment, M, arising from the portion of

the beam on the rig'/ii of PQ is clearly clockwise,

i.e. negative, with the usual convention that counter-

clockwise couples are positive.

But g is negative too, since g = ^(g), and

the inclination of the axis of the beam \-j-) decreases

as we proceed along the beam in the direction of x
d?v

increasing; thus EI-^ and M have the same sigh,

i.e.

EI^ = M.
dx''

This is the equation that gives the deflected axis of

the beam.

The above is the Bernoulli-Euler theory of the bending of

beams. A state of strain is assumed defined by the properties

:

1. The axis is unaltered in length.

2. The cross-sections remain plane, undistorted, and perpen-

dicular to the axis.

3. There is no extension or contraction of fibres, perpen-

dicular to their length.
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The mathematical theory of elasticity shows that the actual

state of strain, even under simple distributions of load, does not

exactly fulfil the above conditions.

In calculating the moment of resistance of the beam arising

from these strains, we further suppose that the straining of the

longitudinal filaments is not resisted by shearing stresses along

the sides of them ; in other words, we suppose the beam to be

equivalent to a bundle of free wires placed parallel to the

axis.

The exact theory shows that when any linear dimension of the

cross-section is not more than, say, ^ of the length of the

beam, the formula for the deflection obtained on the simple

theory given above is sufficiently correct.

Example.—A uniformly loaded beam, supported at both ends,

carries a load of P lb. per foot run. Find the maximum de-

flection.

Let / be the length of the beam (fig. 13), OX, OY, the axes

chosen in the usual way, where OX coincides with the axis of

the unbent beam.

Y>.
R.

i>R/

>P

Vx

A/\/V\/\/-./\/\/\/\/\/\/\A/\/\/\A O
Q f^

ni-A
Fig. 13

The forces keeping the beam at rest are the loads acting ver-

tically downwards, plus the reactions at O and O'.

Symmetry.—From the symmetry of the figure we see that:

(a) The reactions at O and O' must be equal, each being

\Vl, and they must act vertically upwards.

(5) The maximum deflection takes place at the mid-point of

the beam, and is negative (downwards).

(c) At the mid-point (where the deflection is a maximum)

^ = 0.
dx



CURVATURE OF PLANE CURVES 215

Boundary Conditions.—It is also clear that j' = o when x =^ o,

or when ar = /.

Consider any section PQ at x. The moments of the forces to

the right of this section are, in the counter-clockwise direction,

2

.-. M = [\vi{i-x)-\ni-xn

Integrate this equation, and we get

Ei^ = ^pr_ /(/-^)^ + (ir^n + c.
uX l» 2 ^ J

where C is a constant.

We can determine C by noting that

-i = o at the mid-point, i.e. when x = -.
dx 2dx

= ipr-?4
24.

24'
C_P/'

• T7T^ - i,X>[- Kl-xf , (l-xf
\ ,

P/3

dx * L 2 ^ 3 J ^ 24"

Integrating this equation again, we get

Ei^ = iPrfc^-(izi^n + p^,+D,
U o 12 J 24

where D is a constant.

To determine D we use the fact ihaiy = o when * = o.
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Let 5 be the maximum deflection, which is the value of y

PI*

corresponding to j: = _
2

•••- = K5-5|]-S
= -4- p^*-

384

If W is the total load carried,

W = ?/,

and S = §_ .

384 EI

The negative sign shows that the beam is sagging.

Exercise 1

1

1. In the cubical parabola, where

a^y = X?,

show that the radius of curvature is

6a*x

2. In the semi-cubical parabola,

aj/^ = x^,

show that the radius of curvature is

(4fl + gx)i r~

3. Show that the radius of curvature of the curve

y = A(, + Ai^r + k^^ + . . . A„jc",

n finite, where the A's are constants, at it = o is

[i + A,'']!

2A2



CURVATURE OF PLANE CURVES 217

4. Find the radius of curvature of the hyperbola

at the end of the major axis.

5. Show that if a particle of mass th lb. is attached to

the end of a string and swings round in a circle of radius

a ft., at constant angular velocity w radians per second,

the tension in the string is lb., where g is the

acceleration due to gravity (32-2 ft. -sec. 2).

6. The equations of a cycloid referred to the vertex as

origin, and the tangent and normal at the vertex as

axes OX, OY respectively, are

X = « (61 + sin^),

y = a{i — COS0),

where 6 is the angle turned through by the generating

circle of radius a.

Assuming these equations, show that the Inclination of

the tangent (^) to the OX axis at any point {x, y) on the

cycloid is given by

tan^ = tan-.
2

Hence show that the arc of the cyloid (s), measured from

the vertex, is given by

.r = 4« sin^

= xj^ay.

Show that the radius of curvature at P is given by

^ = ^V' - ^'

which is twice the distance of P from the base of the

cycloid, when measured along the normal at P.

[The base is the line uv in fig. 3, p. i6g.]
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7. A particle of mass in oscillates under g-ravity in a

cup. The cup is formed by the revolution of a cycloid

about the normal at its vertex. Show that if the particle

starts from rest at a distance A (measured on the surface

of the cup) from the lowest point, the particle oscillates

according to the equation

J = A cosfc)/,

where w is a constant.

Show that 0) is equal to y/{gj^a).

Find the reaction on the cup at any point, using the

results of the previous example.

8. A straight beam of uniform moment of inertia and

negligible weight is bent by a couple applied at each end,

the couples being coplanar.

Show that the centre line deflects into the arc of a circle.

Find an approximate equation for the deflected axis in

the usual rectangular co-ordinates.

State generally how the shape of the curve is modified,

if the weight of the beam is not negligible.

9. A uniform beam is bent in one plane by a single load

TO placed at its centre.

Find the approximate equation of the deflected axis.

What is the central deflection?

10. A straight wire of circular cross-section is clamped
horizontally in a vice. A load w is applied at the free end.

Assuming this to be the only load to be considered, find

the approximate equation of the deflected axis and the

deflection at the end.



CHAPTER XII

Maxima and Minima

"And so, from hour to hour, we ripe and ripe,

And then, from hour to hour, we rot and rot

;

And thereby hang^s a tale."

—

As You Like It.

The graphs of certain functions of x, say sinx, rise

and fall as we proceed along them in the direction OX,
and exhibit points at which the value of the function

is greater than, or less than, its value at neighbour-

ing points. Such values of the function are called

" turning values ".

Turning Values of Functions.

Fig. I

Let ABCDE (fig. i) be the graph of a continuous

function oi x, say/(x);

then jv = f{x) (i)

219
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At the point A corresponding to X = a, the

ordinate y ceases to increase, and begins to decrease

immediately afterwards, as we go along the graph

in the direction of "x increasing", i.e. the positive

direction. At B, the ordinate ceases to decrease, and

begins to increase thereafter. The ordinate steadily

increases in going through the point C. At D, we
have the same state of things as at A, so far as

decrease or increase of ^ is concerned.

Points such as A, B, and D are "turning points",

and the values ofjj/at these points are called " turning

values " of the function. Points such as A and D are

called maximum points, those such as B, m,inimum
points.

These terms are used in a relative sense only; for

instance, if we say that A is a maximum point, we do

not mean that j)/ is an absolute maximum at this point,

for it is greater at D. What we do mean is that

at A we can choose an interval within which the

value x = a \s included, such that for any value

of X (other than a) lying within this interval, the

value f{x) is less than the value f(a). We must
clearly exclude the value x = a, 2is, aX this value f{pc)

of course equals y(a).

Condition for a Maximum Point.

We can put these ideas very simply into symbols.

\iy is a maximum aX x — a, we can choose a positive

number 5 so that

so long as

f{x)<f(d)\
o<|A;-fl|<^J ^^^

The meaning of this definition is seen from
fig. 2.
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Condition for a Minimum Point.

In this condition we merely have to change the

inequality sign in equation (2), thus

< \x-a\ <^V ^^'

Fig. 2

where ^ is a selected positive number, if _j/ is a mini-

mum when X = a.

Differentiable Functions.

It is evident that these tests apply just as much at

points such as D and E as at A and B (see fig. i).

They therefore do not depend on the function having

a definite finite derivative at a maximum or minimum
point. In fact, these tests do not depend on the ideas

of the Calculus at all.

The tests have the disadvantage that they cannot

be applied until we select the value (x = a) at which
we expect a turning value to exist. The tests them-

selves give no hint of these values. We can easily

find a rule which will suggest values of x at which

f(pQ) has turning values, provided /(:k;) is differentiable
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at every point within the range of x we are con-

sidering.

From fig. I it is clear that another property oif(x),

at a turning point of the type shown at A and B, is

that the tangent to the graph is parallel to OX at

points corresponding to such turning values, i.e.

>^ = o at such maximum or minimum values oif{x).

The reader should note that -^ may equal zero at points which

are neither maximum nor minimum points, e.g. at the point C
(fig. i). He should also observe what takes place at points like D
and E. At the maximum point D the two branches have the same
tangent, the gradient of which (tan 90°) is infinite; at the mini-

mum point E the two branches have different tangents. Both
at D and E, therefore, the gradient of the tangent is discontinu-

ous. The rules now to be given will enable us to find all turning

points, such as A and B. If maximum and minimum points like

D or E occur, which is extremely unusual, they have to be found
by special methods.

EXAMPLE /

Find the turning value of 3^(x — i) between x = o and x = \,

excluding these values.

Method a.
Ifj, = ^2(;,_ I) =/(;,),

'^y = 2x^- 2X.
ax

Put 3*^ — 2:r = o, whence :r = o or ;i; = f , i.e. between

X = o and ar = i, -ji = o when x = i.
ax

The value x = J may therefore correspond to a turning value

of x^x — I ).

To test this,
/(I 4. 5) = (I + 8)2 (I + a - i)

= s'+s'-A,
y(«) = - 5V.

.-.yd + «)-/(«) = s^ + «^
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and 82 + S' is positive for all values of 8 > — i, i.e. so long as

o < |*-f I

< I,

We have therefore found an interval including x = %, such that

/(x) > /(I) in this interval of x,

i.e./{x) is a minimum eX x = %.

Method b.—We can arrive at this result by another method.

1. y = o, when x = o and x = 1.

2. Let X ^ K, where k is a positive fraction, then

/(.) = .\. - I),

K^ is positive and (/c — i) is negative. Hence /"(t) is negative, i.e.

f(x) is negative for all values of j; between o and i.

3. There is one value only of x between o and i which makes
dyjdx equal to zero, i.e. the tangent to the graph is parallel to

OX at :i- = I only.

4. On the other hand, there must be one value of x, say f, at

least at which x\x — i) is a minimum between at = o and jr = i,

since x\x — i) is zero at j; = o and x = 1, and negative between

these values of *.

5. Consequently this value of x must be that at which -2 = o,

i.e. f = f

.

.". x^x — i) is a minimum aX x = %.

Another Form of the Maximum-Minimum Test.

Consider the tangent at P (fig. i), and trace what

happens to it as the point of contact P moves along

the curve through A to Q. The tangent line evi-

dently rotates in a clockwise direction, becoming

parallel to OX at A. Clockwise rotation means a

decrease in the angle of inclination 0; hence tan

must decrease as P moves through A to Q, i.e.

^ must decrease steadily between P and Q. Q is

dx
clearly positive at P, zero at A, and negative at Q;
hence
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At a maximum point, ^ changes sign from
ax

positive to negative, as x increases through its

critical value,

i.e. \i f{x) is a maximum when x = a, then -^ is positive when
X < a and negative when x > a.

^

Similarly, at B, we see that:

At a minimum point, ^ changes sign from

negative to positive, as x increases through its

critical value.

EXAMPLE 11

Let y ^= (x — \)(x — 2)^.

/.g = (.-.) (3.. -4).

which is zero when ar = 2 and when x = ^.

We are therefore led to consider these values of x as possible

maximum or minimum points.

When ^ < X < 2,

(x — 2) {3Jr — 4) is negative.

When :ir > 2,

(x — 2) (3^; — 4) is positive

;

hence at a: = 2, -^ changes from negative to positive as x

increases, y is therefore a minimum at j: = 2.

Similarly, when x < ^, (x — 2)(3.r — 4) is positive, and when
^ < X < 2, {x — 2) (3^ — 4) is negative, whence dyjdx changes
from positive to negative as x increases through the value x = ^.

.'. y is a maximum at :i: = J.

The reader should draw the graph of

y = (-^ — 1) (^ — 2)',

and confirm these conclusions.
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Analytical Test of Maxima and Minima.

There is yet another way in which this test may
be put.

We have already seen that -^ = o at a turning point.

Suppose that at the turning point {x = a),

-3^ is positive.

Then 3- {-^) is positive, and when the derivative of

a function is positive, for x = a say, the function itself

increases as x increases, through a.

Therefore -f- must increase as x increases from
ax

a — h to a + A, provided k is sufBciently small.

But
dx

is zero when x = a, hence -y- must be
ax

negative when x is just less than a, and positive

when X is just greater than a, i.e. -^ changes sign

from negative to positive as x increases through a,

and hence jj/ is a minimum.
The rule is, therefore:

If dyjdx = at X = a, and d^y/dx^ is positive

at ^ = a, then 3; is a minimum at x = a.

Similarly:

If dy/dx = at X = a, and ePy/dx^ is negative

at X == a, then y is a maximum at x = a.

If d^yjdx^ is zero when x = a, this test fails, and
we then have to revert to the general tests already

given.
(D102) 16
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EXAMPLE ///

Let y = x^— 15* + 3,

then -^ = 2x — 15, which equals zero when x = 7^,ax

-j^ = 2, which is always positive.

.*, the minimum value of x^ — i5:f + 3 occurs at a: = 7J.

EXAMPLE IV

Let _j/ = A^,

dy
die

= y<:\

and ^, = 6x.
ax-

Both derivatives are zero at a: = o, and the analytical test

fails. But we can see from the following considerations that there

is no maximum nor minimum. It is evident that x^ steadily in-

creases as X increases from zero, and steadily decreases as x de-

creases from zero, ifi has therefore no maximum nor minimum
value for any value of x.

EXAMPLE V

Find the fraction which exceeds its square by the greatest

amount. Let x be the required fraction; then y = x — x^fnust

be a maximum.
This occurs when x = \.

We shall now discuss some problems in maxima
and minima which arise in physics and engineering.

EXAMPLE VI

In an electrical transformer the losses of energy arise in the

heating of the copper conductors (the "copper losses") and of

the iron of the core (the "core losses"). Assuming that the

total copper losses are proportional to the square of the secondary

current, and that the core losses are constant at all currents,
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show that the transformer works at its maximum efficiency

when the core loss is equal to the copper loss, assuming the

power-factor of the load to be constant.

[The power-factor of an alternating-current circuit is the factor

by which the product of pressure and current must be multiplied

to get the power taken by the circuit ; for instance, if a coil of

wire carries an alternating current, I amperes as read by an

ammeter, and if the pressure across the coil is E volts as read by

a voltmeter, the power consumed by the circuit is not EI watts,

EI cos<^, where cos<p is the " power-factor".

Its magnitude depends on the nature of the circuit.]

Let E stand for the r.m.s. secondary pressure,

I ,, ,, ,, „ current,

COS0 ,, ,, power-factor;

then EI cos0 is the power delivered by the transformer.

Let W stand for the core loss (a constant), then the losses in

the transformer are

W -|- aP, where a is a constant

;

hence the power input to the transformer is

EIcos<^-|- W-|-aI2;

hence the efficiency (tj) is given by

_ EI cos^
^ ~ EI COS0 -1- W -I- aP'

- = I + r^— [WI-i
-I- al],

7,
^ E cosi^

^ ^ "

and

Now ^(L) = o when WI-^ = a, i.e. when W = aV,
al \-n'

i.e. when the core loss equals the copper loss; and 2WI""' is

positive, as also is =^—-; hence -_-( i) is positive, i.e. i isE COS0 rfPVi;/ 77

a minimum when the core loss equals the copper loss, i.e. ti is

a maximum under these conditions.
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States of Equilibrium of Physical Systems.

It is a law of physics that if the potential energy*

of a system is a maximum in a state of equilibrium,

then that state of equilibrium is an unstable one;

while if the potential energy is a minimum, the state of

equilibrium is stable. For instance, a cone balanced

vertically on its apex is in a possible state of equili-

brium. But any displacement of the cone from the

vertical reduces the potential energy of the cone,

and hence the potential energy must be a maxi-

mum, and therefore the state of equilibrium is un-

stable. On the other hand, a cone sitting on its

base is in stable equilibrium, because any slight

tilting of the cone increases the potential energy

of the cone. We can put these results in the rule:

If any small change in the configuration of a
system in equilibrium under a conservative system
of forces tends to increase the potential energy of

the system, the state of equilibrium is a stable one.

If the potential energy (zw) of the system can be

made to depend on one variable x, then one condition

of stable equilibrium is that

dw _
dx

A sufficient second condition is that -j-^ should

be positive.

It was shown in Chapter VII that, by making ^x
an infinitesimal, 8i!ol8x differs from dwjdx by an in-

finitesimal of the first order, hence we can put

Sw _ dw .

Sx dx

Now, f^ = o
dx

* i.e. the mechanical potential energy.
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when the system is in equilibrium, hence

8w _

i.e. Sw = eSx

or Sw = o,

neglecting infinitesimals of higher order than the

first, and we get the result:

When a physical system is in equilibrium, the

change in its potential energy due to an infinitesi-

mal change in the state of the system is zero, to

the first order of infinitesimals.

EXAMPLE VII

If/ is the amount by which the pressure inside a soap bubble

exceeds the atmospheric pressure, r the radius of the bubble, and
T the surface tension, show that

^ = 41.
r

The system, consisting of the soap bubble and the air inside

and outside it, is in equilibrium, hence

dw = o

where w is the potential energy of the system in the equilibrium

position.

The increase in the potential energy of the system is the work
done against the forces of the system in any infinitesimal change
in the configuration of the system.

Let r change to (r + Sr); then the volume increases by 5v and

the surface by 8S.

The energy of surface tension is TS where T is the surface

tension and S the surface, hence the increase in potential energy

of surface tension is 2T5S (because there is an inside and an out-

side surface). The gas in the bubble expands and work is done

of amount pSv, hence the potential energy of the system falls
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by that amount. The net increase hi potential energy is then

Sw = 2TSS — pSv = o,

i.e. 2T5S = pSv.

,'. Sv = ^irr^Sr,

and S = 4irr^.

SS = BirrSr.

.'. 2T X &7rr5r = px ^irt^Sr.

A Problem in Engineering Economics.

Certain economic problems can be solved by the

methods of this chapter.

EXAMPLE VIII

The thermal efficiency of a turbo -alternator is greatly im-

proved by using it with a condenser. On the other hand, the

condenser and the auxiliary plant associated with it are ex-

pensive in first cost and consume energy in running. The
interest on the capital cost and the maintenance charges per

annum of the condensing plant, as well as the value of the

energy used by it per annum, increase rapidly with the vacuum
which the condensing plant gives. A stage is reached when any
further increase in the vacuum will bring about a net financial

loss. We will take as an example a P-kw. turbine plant, and
suppose that the plant draws water for cooling the condenser

from a river or the sea.

J. R. Bibbins has published a curve showing how the cost of

condensing plants varies with the vacuum.
If A is the capital cost of a 26-in. vacuum plant for a P-kw.

turbo -alternator in pounds sterling, the capital cost (C) at a
vacuum v in. is given by

C = A /i-|-°-56(t>-26n
I 30 — 1/ J

approximately, between the limits of 26 in. and 30 in. of vacuum-
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We will suppose, for the sake of getting a first approximation,

that the power taken by the auxiliary plant, both in the boiler-

and engine-houses is constant at a per cent, and that the

evaporative power of the boilers is constant at q lb. of steam per

pound of coal.

The effect of vacuum on the steam consumption of the turbine

is given in a set of curves published by W. H. Wallis. These
curves show that between 26 in. and 29 in. of vacuum, the per-

centage reduction in steam consumption {p), is given by

p = ^(v — 26) nearly.

If TV is the steam consumption per kilowatt-hour at vacuum
V, and 7f'2i; at 26 in. of vacuum, then

w = w^al I — 0'04(z< — 26)}.

It must be clearly understood that this formula is an empirical

one which holds between 26 in. and 29 in. of vacuum approxi-

mately. Between 29 in. and 30 in. the curve of w against v

must clearlv bend round and become more or less horizontal

because a point will be reached, with increasing v, when the

specific volume of the exhaust steam is so great that the exhaust

end of the turbine will become choked, and any further increase

of vacuum simply goes in overcoming increased exhaust pipe

and condenser friction.

We will suppose the coal costs £K per ton, and that the plant

is to run at full load only and to be so run for H hours per

annum. The interest and maintenance charges in the condens-

ing plant can be put at r per cent per annum.

1. The capital charges amount to

r\( ^ o-56(z,-26)|^ ^^^^^
100 1. (30 — 11) J

2. The units of electrical energy (Kelvins) available per annum
are

\ lOO'

3. The steam consumption per kilowatt-hour is

w = Wii;{i — 0'04{v — 26)} \h.

,
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and the cost bill is

r P..^{i-o.o4(^>-26)}HK-|^ ^„„„,„
I- 2240^ J

4. If we put, for brevity,

_ o-fi6 X 240^.

PHfi- -^)x 100
\ 100/

and P = '"J"^^^
,

(l - -^)2240^
\ 100/

we get for tlie cost, per unit of electricity available, arising from

these items (i) and (3), in pence (^),

0-56

1

(30 — ") '

5. At the most economic vacuum, y must be a minimum,
whence ,

i.e. af-i— + ^^1:141-0.04^ = o
L30 — V (30 — vY-i

o-oip

i.e. (30 — 7)) = + . / —°^—-.

V must be less than 30.

•^ V O.QI/S

Substituting again for a and /S we get

V o^oi^ ^ ^^"^Va'aeHKP

and. = 30-3S-4y^^;f^.

It must be borne in mind that this example takes account of
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two factors only—the economy arising from a reduction in steam
consumption following an improvement in vacuum, and the cost

of providing that improvement in condensing plant and its main-
tenance. There are many other factors which would be taken
into account in engineering practice. Some of these are

:

1. The reduction in water rate which follows an improvement
in vacuum. This brings about a reduction in the size of the

boiler plant and of the main steam piping.

2. A smaller circulating water system and smaller circulating

water pumps would follow an improvement in vacuum.
3. More power would be taken by the air-pumps or their

equivalent at higher vacua.

4. The low-pressure end of the turbine would be larger and
more costly at higher vacua.

g. The boiler evaporative power would fall off with higher

vacua.

The first two points would lead us to use a higher vacuum,
the last three, a lower one.

The problem can only be adequately thrashed out—like most
economic problems—with a complete and accurate knowledge of

the data and circumstances of each case, and the investigation is

best done arithmetically and graphically. These complications

notwithstanding, it has become the usual practice to work at a
vacuum of about 29 in. in turbine-driven power stations where
there is a copious supply of cooling water for the condensers.

Exercise 12

1. Discuss the turning values of

(i) jj' = ^ — 6x^ -\- gx — 6.

(ii) y = xfi - is,x^ -I- 3.

2. What is the radius of the largest cone that can be

put inside a sphere made in the form of two accurately-

fitting hemispherical cups?

3. How should a rectangular piece of paper be cut so as

to fold into a box, without a lid, of maximum volume?

4. Find for what values of d, sin^ -f- COS26 has turning

values, and ascertain which are maxima and which
minima.
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5. The corner of a leaf of paper is turned back so as

just to reach the other edge of the page. Find when the

length of the crease is a minimum.
6. Two ships are sailing uniformly, with velocities u

and V, along straight lines converging at an angle 6.

Show that if a and b be their initial distances from the

point of intersection of the courses, the least distance of

the ships apart is

[av — lm)s\nd

(u^ + v^ — 2UVCOS&)^'

7. The path of a projectile is given approximately by

4A cos^^'

where y is the altitude of the projectile, x the horizontal

distance of it from the point at which it is fired, and 6

is the angle of inclination of the axis of the gun to the

horizontal. A is a constant, depending on the initial

velocity of the projectile. Find for what value of 6 the

horizontal range is a maximum. This equation ignores,

among other things, air resistance. Would you expect

your result to be greater or less than the more correct

result, in deriving which air resistance is allowed for?

8. In the example of the soap bubble (p. 229), suppose

the bubble carries a charge of electricity e. How would

this affect the internal pressure and by how much? [The

potential energy of a sphere of radius r carrying a charge

e is where a is a constant.!
r

g. Referring to the condenser problem worked out on

p. 230, show that the best vacuum to employ is that at

which the rate of increase of the capital charges, per

annum, with vacuum equals the rate of decrease of the

coal bill, per annum, with vacuum.

Work out completely the case when the capita! charges

and maintenance of condenser plant are put at 10 per
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cent per annum ; the cost of the condensing plant for a

io,ooo-kw. plant, ;^25,ooo at 26 in. ofvacuum ; the evapora-

tive power of the boiler plant, 7-5 lb. of steam per pound

of coal ; the steam consumption per kilowatt hour at 26 in.

of vacuum, 13 lb.; the hours worked 4380 per annum ; and

the cost of coal £1 per ton.

10. The velocity, v, of the cross head of a reciprocatingf

single-cylinder steam-engine is connected with the angular

velocity of the crank by the approximate equation,

V = (Df [s'lnoii + —
- sin2(o/],

where to is the constant angular velocity, r is the crank

radius, I the length of the connecting rod, and i is the

time measured from the moment when the piston is at the

back of the cylinder and just beginning to move outwards.

Find for what value of i the velocity of the cross head

is a maximum. Calculate this maximum velocity when
the speed of the engine is 75 r.p.m., the length of the

connecting rod 12 ft., and the crank throw 2 ft. What
is the position of the crank at the moment of maximum
velocity of the cross head?



CHAPTER XIII

Exponential and Logarithmic

Functions

" In order fully to appreciate the brilliancy of Napier's invention

and the merit of the work of Briggs and Vlacq, the reader must bear

in mind that even the exponential notation and the idea of an ex-

ponential function, not to speak of the inverse exponential function, did

not form a part of the stock-in-trade of mathematicians till long after-

wards. The fundamental idea of the correspondence of two series of

numbers, one in arithmetic, the other in geometric progression, which

is so easily represented by means of indices, was explained by Napier

through the conception of two points moving on separate straight

lines, the one with uniform, the other with accelerated velocity. If

the reader, with all his acquired modern knowledge of the results to

be arrived at, will attempt to obtain for himself in this way a demon-
stration of the fundamental rules of logarithmic calculation, he will

rise from the exercise with an adequate conception of the penetrating

genius of the inventor of logarithms. "

—

Chrystal,

In many books of mathematical tables, tables are

given of

(a) the exponential function, C,

(b) the logarithmic function, loge^.

A short table of each function is given at the end

of this book.

The exponential function of x \s the number ob-

tained by raising a certain irrational number e

= 2'7i828 . . ., to the power x, for real values of x.

The logarithmic function of x, or the natural loga-

rithm of X, is the index of the power to which e must

be raised to give the number x.
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In elementary algebra, we have

if JK = logeX,

then X = e'o (i)

The theory of these functions is difficult, and proved

a formidable stumbling-block in the history of mathe-

matics. The theory is best worked out by methods
beyond the scope of this book, and for the present

we shall take the tables for granted, and endeavour

to ascertain the most important properties of the func-

tions from these tables.

For any pair of values x and y in the logarithmic

table there is a pair of values in the exponential (anti-

logarithmic) table, such that

\i y = \ogeX, (2)

then X = e", (3)

in fact the two tables are inverse to each other; i.e.

in the one, y is regarded as a function of x, which is

written \ogeX, and in the other, x is regarded as a
function of ^, written e^, where jv is an index obeying

the ordinary laws of indices and e a certain number

—

the base of the natural logarithm.

Graph of e^.

A glance at the table of e" will show that:

(i) whenjv = o, ev = ^ = i;

(2) when y is positive, e" is positive and greater

than i;

(3) when jv (= — p) is negative, e'P = — = a
positive fraction.

Plot a few values of e^ for different values of y,
taking values of e" from the table.
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The graph will be found to be as shown in fig. i
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in fig. 2, from which it appears that we cannot have
the logarithm of a negative number. Draw these two
graphs on tracing paper, and show that they can be

superimposed on each other. They are therefore the

Y



240 . APPLIED CALCULUS

the graph of e" and of loge^sc have definite tangent lines

and therefore definite slopes at every point on them.

We are thus led to consider the derivatives of e^ and
\ogeX.

Derivative of e?'.

Let X = e",

then Ax = ev + ^v - e»

= gve^y — gw

= eyie'^y - i).

. ^ - M^^" - ')1
•• Ay ~

'I Ay J

.-. Lt (^) = ..xLt P-^1 (4)

We therefore require the value of

which the reader will see is simply the value of j-

at the point (i, o), by the definition of the derivative.

This limit is difficult to find rigorously. We can

easily see what its value must be from elementary

considerations.

I. Plot a few points of the curve ^ = e'' at intervals

ofo-02from^ = — o-ito^ = + o-i, and draw the

curve through these points. Draw the tangent to

the curve aXy = o, i.e. at the point (i, o). It will be

found that the tangent line makes an angle of 45°

with the axes OX and OY,

/dx'
I.e.. (f) = tan 45° = I.
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But, as we have already remarked, the value of

is simply the value of dxjdy at the point (i, o), which

we have just seen is i

;

(5)

2. Alternatively, we can deduce the value of the

limit thus.

A glance at a table of values of e" shows that,

when y < 1-5,

I +y < ev < 1 +y + y\
:. y < &> — I < jv + y.

e" - I
.. I < < \ -y y.

y
From this inequality it is evident that

Lt {'^^\ = Lt (?^) = I.

y _> oV y / A!/ -> o\ ^y I

,. Lt i^\ = evxi.
Ay _> oVAjJ//

.*. -^ = e" = X.
ay

&i therefore satisfies the equation

I = -' (6)

and the derivative of e" is e". This property is highly

important, and may be put in words: the exponential

function merely repeats itself by differentiation. No
other function has this remarkable property, which
has led to the use of e" and logejv in theoretical

calculations.
(D102) 17
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Derivative of logex.

Reverting to equation (4),

Ax
Ay

. Ajj/

Ax e«
•^

[e'^y - ij

Now Ajv — o when Ax —> o, because jc (= e") is a

continuous function of jv-

Lt m = 1 X Lt

X I.

dy _ }_

" dx e«

dx ~ x' (^^

i-e. ^(logex) = ^ (8)

Also logcA; = j he (9)

•••

\y''^A = £f
.: loge{b) - loge(a) = j^—•

Put a = I, then loge(a) = loge(i) = o.

.-. logeb =
j^^ (10)

/^ dx— is a func-
1 ^

tion of b. We have therefore succeeded in expressing

the logarithmic function as a definite integral.

It is better to keep to x as our variable in logeX,

and putting 6 = ^ we get

, f dx
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The latter form of the integral is open to the

objection that the upper limit has the same symbol

as the variable.

The upper limit x stands for the extreme value of

X occurring in the range of integration.

It is more convenient to avoid confusion thus:

must be the same as

Fig. 3 (*)

(Compare figs. 2>^ and 36.)

Hence \ogeX = I f .(II)

The two important properties of the logarithmic

function have now been found.

I. j"^ = logeX {X > Oy

2. Jx^logex) =
'

X

* The curve y = - or yt I is a hyperbola, the asymptotes being:

the straight lines ^ = o, j/ = o. The logarithm of any particular

value of t, say x, is the area shown in fig. 3 (a). For this reason

natural logarithms are often called "hyperbolic logarithms".
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To verify graphically that e = 2 '718 .

We have y = logeX = j —,

X = ev.

Put J/
= i; then X = e.

dt_ r —~
Ji T

To find the value of e approximately, we have to

find the position of E (fig. 4), so that the area PAEjE

F!§r-4

measures unit area. OEj then gives the value of e

approximately.

There is no difficulty in getting e = 272 in this

way. This figure is very near to the truer value

e = 2-718.
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Why e is chosen as the base of the natural

logarithms.

The reader may still be at a loss as to why the curious number

e — 2-71828

is used as the base of the logarithms used in theoretical calculations,

whereas it would seem so much simpler to stick to the usual base 10.

The answer is that 10 can be used if preferred, but its use leads to

clumsy multipliers.

Briefly the reasons are these

:

1. We found that (p. 240) in finding' the derivative of the expo-

nential function, we required the limit

Lt (f^^'V

Suppose we had not chosen base e, but base 10. Everything, in

our deduction, would have been the same down to

Al/—> 0\ Ay '

To find this limit we should have used the table of ordinary anti-

logarithms.

On looking up the table, we should find that we cannol now say that

T +y < lo* < 1 +y+y\
when y is less than a certain value yo-

This can be said only of the exponential table constructed to

base e.

2. For many purposes we require the value of

fdt("dt

JiT'

and the value of this is logeX, a fact which we have ascertained from

the table of the exponential function constructed to base e.

Common Logarithms.

There are formulas corresponding to (5), (6), (8),

(11), for logio^ and 10", but they are not quite so

simple as formulae (5), &c.

Conversion from natural logarithms to common
logarithms and vice versa is quite simple.
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The rules are:

1. To convert logex into logio^, multiply by

0-43429, i.e. logioA; = logeX x 0-43429 • •

2. To convert logiox into loge^, multiply by

2-30259, i.e. loge^ = logioJif X 2-30259. .

The proofs of these rules will be found in any book
on elementary algebra.

From these fig-iires, it follows that

^(log,,.*) = ^{log«* X 0.43429. •} = ?^3^, (.2)

by pp. 123, 242.

and
j -7 = 2-30259. ..X logiox. (13)

Also 10"^ = (glogeio)* = e^'sn^to and

rf^/ 2-30259.. I\ ^ ri / 2 30259..j;-l ^ ^2 -30259 . . A:)

rf.r\ / rf(2 30259 .. *)\ / dx

= ^2-30259.. X X 2-30259 . .

.'. ^('°*) = 2.30259.. X Itf= (14)

so that 10^ satisfies the equation

^ = 2.30259 Xjr (15)

By talcing e as the base, instead of lo, we get rid of these rather

clumsy multipliers in our equations.

WORKED EXAMPLES
/h

f.

, T:<i^y ivhere a, b, c, and d are constants.
a{cx + d)

Put z = cx + d. /. ^ = c,
dx

and the given integral becomes

/f
When X — a, s ^ ca -\- d.

X = b, s = cb -\- d.
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-icb + d

rcl> +
'. the given integral = /

J ca +
[-ico + a
log,^

~ica + d

= loge{cb + ^) — \oge{ca + d)

^ \ca + d)

2. Differentiate ~loge(cosx) with respect to x.

d
{ — log«(cos;«:)} = i-

.

rf cos;i:

Put — loge(cos:f) = «, then

du _ du dcosx
dx dcosx dx

.'. -i-{—logeCOS:r) = — X (— sin:f) = tanjf.
dx COSAT

Note.—From this result, it follows that

lta.nxdx = — logfe(cosji;).

3. Show that y = AeF^ inhere A is an arbitrary constant)

satisfies the equation

-£+--S+--vi+«o- = ° ('^)

where (7„, Cn-ii a^-^, . . . Oq are constants, provided m is a root

of the equation

a„»2" + a„-i7»»— +. . .OiJ« + a„ = o (17)

Uy = ke'^,

then -^ = Ame/^,
dx

dx^
^'"^

•

^ = Knfie^,
dx'

^ = Km^^'.
dx^
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Substituting in (16) we get

KW + an-i/W-i + . . . + a„)Ae'»' = o,

and any value of m which makes

rt„W2» + On-im"-^ + . . . flo = o

makes Ae"" a solution of the equation, whence the result stated.

A = o also solves the equation, but the solution is useless. In

the solution retained, A can be a?iy arbitrary constant. This

result is highly important, and occurs constantly in science.

A^ote.—Equation (i6) is a differential equation with constant co-

efficients.

Note on Solutions of Differential Equations.—The following facts

regarding differential equations may be found useful. They are dis-

cussed in full detail, in works devoted to differential equations.

A. If J/ is a function of x, any equation which expresses a relation

between y, the derivatives of^ of any order whatever, and x is called

a differential equation. E.g.

§?' + X;. = o.
ax

where X is a constant.

B. The general solution of a differential equation is the most

general relation between x and y, without any derivatives occurring

in it, which is consistent with the given differential equation.

C. A function of x which satisfies the given differential equation

may or may not be the general solution. Whether it is the general

solution or not depends on the number of arbitrary constants it con-

tains and the type of the differential equation, e"^ is a solution

of the equation in (A), but it is not the general solution. It is a par-

ticulat solution.

D. The order of a differential equation is the same as the order of

the highest derivative it contains when rationalized. Thus, the

equation in (A) is of the first order, while (a), p. 249, is of the second.

E. It is proved in works on differential equations that the general

solution of a differential equation of order n must contain n arbitrary

and independent constants and can have no more.

F. In seeking the general solution, therefore, we try to find an

equation in x, y, and the requisite number of arbitrary and inde-

pendent constants, such that when these constants are eliminated we
obtain the given differential equation.

Points A to D are definitions of terms. Point E is a theorem which
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requires proof and has been proved, but the proof is difficult.

Point F summarizes the nature of the problem of solving a differential

equation.

4. As a particular case of (id), solve

S-sg+^ = ° w
Putj* = Ae*™ as in example (3), p. 247, and substitute. We

get

nfi — SOT + 6 = o, (b)

i.e. {m — 2) (/« — 3) = o.

.'. m = 2 or m = ^,

i.e. Ae^'" or Be'* satisfies the equation.

By adding- these results, we get

y = Ae^^-f Be^.

Find -^ and -Ji for this value of v and substitute in (a). It
ax dx^

will be found that this value of ^ satisfies the given equation,

whatever values be given to A and B.

Note there are two arbitrary constants in the solution, A and B,

which arise from the t-wo roots of the quadratic equation for m,
namely nfi — ^m + 6 = 0. This condition is characteristic of linear

differential equations of the second order.

If -^ were involved, there would be three arbitrary constants ; the

equation to find m would be a cubic one and the solution would be the

sum of three terms, each with an arbitrary constant.

/dr-^~—j, a being a positive number.

I = l-a 3 = lydx where y = -5-?—,.

ix^ — a^ r -^ x^ — a^

The graph of -^—^ is shown in fig. 5.

It is traced as follows :

1. Plot the graph of j/ = x^ — a'' and take the reciprocals of

the ordlnates of this graph.

2. When x"^ = cfi, the denominator of \l(x^ — a^) becomes zero,
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and the fraction becomes indefinitely great. The straight lines

X ^ ± a, i.e. X = + a and x = — a, which are straight lines

parallel to OY, and passing through the points (+ a, o) and (— a, o)

respectively, never cut the curve, as there is no point on the curve

at a finite distance from OX for which x = + a. These lines are

called asymptotes. The line ^ = o is another asymptote, since

no matter how large x is taken, numerically, —^ ^ is still

more than zero and positive.

3. When x"^ > a^, the denominator is positive ; when jf^ < cfi,

the denominator is negative. The numerator (+ i) is always

constant and positive. .•. when x passes through + a, in-

creasing or decreasing, the value of i/jc^ — a^ changes sign,

i,e. the graph disappears on one side of the asymptotes *=+«,
and reappears on the other side with the opposite sign.

4. When x''' > a^, the values of -.--^^

—

„ are positive. .'. the
x'' — a'

graph lies on the positive side of OX, when x > + a and < — a.

5. When j;^ is very large —^—^ = -^ nearly, which is a very

small positive number. .'. the graph approaches OX (positive side)

when X —> large positive or negative values. In fact (2 above)

y = o is an asymptote.

6. When x"^ < a', x"^ — a^ is negative and -5 -„ is negative.
x^ — a''

,'. between the asymptotes .r = + a, the graph lies on the nega-

tive side of OX, and approaches — 00 when x —> -\- a or —a.

7. When x^ < a^, x^ — a" = a^ — x^ numerically, and a^ — x'^

is greatest numerically when x^ is least, i.e. when x = o.

.', !

—

- is least numerically when x = o.

x^ — a'

/. -g-^—, must approach nearest to OX for the value a: = o,
x^ — a^

i.e. :<: = o corresponds to a turning point in the graph.

There are therefore three branches, AE, BD, and CF.

We must be careful to exclude the values x = +a from the

range of integration, as when x = +a, the value of —^-~—j is

indefinitely great as the graph shows, and there is not a definite

strip corresponding to a Sx which includes x = +a.
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Confine ourselvesfirst to branch A E.

We seek a formula for any area such as P^?Q. x > a every-

where on AE.
' = ir_i !_.T

x'' — (fi 2cn-X — a .r -f- flj

dxr_^^ = j_rr_E -y^
J x^ — a' 2aJ \_x — a x-\-aJ

__ I f dx i_ f dx
2aJ x— a 2aJ x -\- a

— :^ ['°S«(^ — a) — loge(.T + a)]
2a

= ±log.(^^) (i8)
2a \x + af

itegral,

, where b and c are both positive numbers.

+
Take now the definite integral,

J iX^ — d

When b and c axe both greater than a, the definite integral is

J i,x^ — a^ 2a L{c + a)(b — a)J

Now, suppose b and c are not both greater than a. We then

pass to the other two branches of the graph.

Branch CF.

If — c < — b < — a, m / -rzr~v ^^ '^ negative going from

—b to —c, but 2 _ 2 is positive, x^ being > a^, within the range

of integration ; therefore the summation indicated by the integral

must be negative, i.e.

r_^^ = r_Liog.(^)r
J .1, x^ — a^ L2a ^x-\-a/-i-i,

= JL log/:n£^) - -L log/^l^")
2a \— c + a/ 2a \—6 + a/

= raM^a)-raM^)

2a^'l(c + a)(b-a)J
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Branch BD.

On this branch — a < x < + a, and if we used the formula

[ dx _ I
,

(x — a\

(x — a)l(x + a) would be a negative number, and we have no
logarithm of a negative number.

We can easily avoid this difficulty thus:

I^^ = - !^2' ^here - a < x < + a.

a' — x' 2a\-a-\-x a — x-i

.-. f^^= Lfr^ + ^idx
J a' — x' 2aJ La + X a — xj

_ I f dx , I C dx
2aj a -{• X 2a} a — x

= ^ [log8(a + x)- loge(« - x)]

= i.iog/^±£).
2a \a — xJ

With definite limits we get

Jta^-x^ 2a ^l(a - c) (a + *) J'

where — a<6<c<+a,

J 6:c2 - a2 2a ^1 (a - c) (a + *)J

2a ^l(a + c) (fl - *)J

The three cases can be combined in one formula if we note

that CHf

jf = ilogeW.

whether x is positive or negative.

Therefore f-^^ = -logfc-|'-
J x^ — ce' 4a (^ + a)

and r "^^ = -^ loe T^'^
" "^"^ (* + ''^H
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It is important to remember that b and c must be such that

neither + a nor — a lies between them. Otherwise the integral

is meaningless.

6. Integration of I—„ , ,—;—

.

* ^ Jax' + bx + c

The integrand is

ax' + bx + c

We must examine carefully the denominator of this fraction.

The reader has probably already realized the importance of the

vanishing of a denominator. (See Ex. 5, p. 249.)

The quantity ax^ + bx -\- c equals zero for all values of x that

are equal to the roots of the equation ax' -{- bx+ c = o. The
equation is quadratic and has two roots. These may be both

real or both complex numbers. If P > 4ac the two roots are

real.

Let a and /S be these roots. Then, when ar = a and x = p,

ax' -\- bx-{- c = o. The graph of ax^ -\- bx-\- c is a parabola

whose axis is parallel to OY.
To show this, transfer the origin from O to O' where O is the

point (
— — , o), and let O'X' and CY' be parallel to OX and OY

2a

respectively.

If y, y be the co-ordinates of any point P on the parabola

referred to the new axes,

xf = X and y' = y.
2a

.'. substituting these values in

y = ai^ -\- bx -{-c, we get

\ 2a/ V 2a'

= aix"-l=^+^\+bxf-^+c
\ a 4av 2a

= ax''-b3^+^ + bxf- — + c
4a 2a

= ax''-^ + c
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This equation gives the same value for y' whether x! is posi-

tive or negative. The graph is therefore symmetrical about the

new axis of v, i.e. about the line j; = = --^ referred
2a 2

to the original axes (figs. 6, 7, 8).

The position of the vertex is found from the fact that O'V is

the value of^' when x' is zero, i.e.

O'V = - (^l^-i^Y
4a

{!}' — 4ac) is positive when the roots are real. Also the para-

bola cuts the OX axis when y = ax^ -\- bx -\- c = o, i.e. at

X — a. and X = p, where « and j3 are the real roots of

ax' -\- bx \- c = o.

Case I.—Real Roots. ,, .
0^ > 4ac.

When the roots of ax' + bx + c = o are real, the graph of

ax' -\- bx -{- c is as shown (dotted line) in fig. 6, when a is posi-

tive. When a is negative, the graph is inverted with respect

to OX.
Taking the reciprocal of the ordinate of this graph, for every

value of X, we get the heavy line which is the graph of

ax' -\- bx -\- c

This graph is of the same nature as that shown in fig. 6, for:

1. When ax' -\- bx -\- c = o, i.e. when x = a and x — p, the

function

2.\ ,
> oo-

ax' -\- bx -\- c

.', the graph has two asymptotes, x = a and x = p. y =z o

is also an asymptote.

2. When j; < a or > |9, the denominator of the fraction is

positive (see parabola graph). .'. the graph lies above the axis

X'OX when x > p and < o.

3. When a < X < p, the denominator is negative (see para-

bola graph). .*, the graph lies below the axis X'OX between
these limits of x.

4. Numerically, —^—p- .,
is least when ax' -\- bx-\-c is

€tX "^ OX "|~ C
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The graph has therefore three branches which must each be

considered separately ; the similarity between the graph of this

example and the preceding one suggests breaking the expression

down to one of the form ,^^ j-5.

ax^ + bx + c = a\x' + -x+-\
\. a a)

Since the roots are real, 5^ > i^ac.

is a positive number, which can be written A^.
' — ^ac

Put^ +— = X
2a

:. ax' + dx + c = a{X2-A2).

• f
'^^ = ' f t/j; _ 1 V T• jax^ + bx + c

~ ai"^?^^^ ~ a '

where I is the integral already discussed (5 above).

If X > A or < - A,

.'. the given integral becomes

VS2 — ^ac " 2ax + 6 + V*2 _ j^ac^

on substituting for X and A.

If — A < X < + A, the given integral is

I , f V32 _ Aac — 2ax — b\ ; , v

^W^^c ''^'
Ub^-\ac + 2ax + b)

^P- ^53)-

Case II.—Imaginary Roots.

i" < 4ac.

In this case the graph of >> = ax^ -\-bx -\- c does not cut the

OX axis, but its axis still remains parallel to OY (see fig. 7).

(D102) 18
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If a is positive, y is positive for every value of x, and the

graph of - is positive. If a is negative, y is negative for every
y

value of X, and - is also negative for every value of x.

y
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The graph is also symmetrical about the line x = — — , and

^ = o is an asymptote as before. By plotting an actual case

as an example, say,)/ = x^ — 4^=' + 13. it will be found that there

are points C and D where the curvature changes from positive to

negative. This means that there must be points on i for which
y

the curvature is zero. These points are called points of inflec-

tion. If a = f(x), the curvature is given by

'P^ &\V^\dx))- Seep. 194-

This expression equals zero, when

d^2 I
Points of inflection occur where -3-2 = o, and - changes sign.*

Differentiating z = (ax^ + bx + c)~^ twice with respect to ;c and
equating the result to zero, we get

;iaV -{- 2cibx -\- (b'^ — ac) = o (ig)

The roots of this equation are the x co-ordinates of the points

of inflection.

The roots of this quadratic are real if

{^abY — 4 X 3a^ (5^ — ac) is positive,

i.e. gd'b^ — i2a^b'' + i2a^c,

i.e. I2a^c — zd'b'',

i.e. 3a^{4ac — b'}.

But 4ac > b^ is the case we are considering and a^ is positive,

,". 332{4ac — i^} is positive, and the roots of (19) are real, i.e.

* A point of inflection is a point on a curve where its curvature

changes sign. The gradient of the tangent has therefore a turning

value at such a point. In the example, this condition is satisfied when

= o and changes sign.
dx'
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there are two definite points, C and D, at which the curvature

is zero.

ax'' -\-bx \- c can now be put equal to

"{('+i)'+'TS^)-4«'

the given integral becomes

I — ' r_
^^

I X2 + A2'

where X = * + — and A = —4^^JZ— , a positive number.

The integral

/:x^.-i'"«"5<P-"5«)-

,1 2a
I = - X / .; arc tan

« Vauc — V' I 7—
^ ' V4acI V4ac - 6* J

arc tan
I 2ax + b

V4ac — l^ \ '•J^ac

Case III.—Equal Roots.

In this case b'^ — \ac = o.

jf = air' -{- bx-\- c is positive for all real values of :ir if a is

positive, and it is negative if a is negative.

The graph is shown in fig. 8, on the assumption that the

parabola lies on the positive side of OX.
The graph is got by reducing the width (/3 — a), fig. 6, to zero,

thus making a = ;3 = The two asymptotes in fig. 6
2a

therefore coincide and appear as one asymptote jc = o or |S.

The branch II (fig. 6) disappears and we are left with branches

I and III. The graph is symmetrical about the axis of the

parabola, as before.

(l) X > a and (III) X < V,.
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Summarizing

:

I. When the roots of ax^ -\- bx + c = o are real,

b'^ > ^ac

J f dx I , f2ax -\- b — y/b'^ — 4acl , ,

^"d / —j-p-= — = ;loge-j ^
> (a)

J ax^ +bx + c ViS — 4ac Uax + b+ Vi^ - ^c)

or = - ' lngJ^-:_4''^ + ^^^ + ^l (5)Vi^ _ ^ac I V J^ — nac — zax — b)

according as (x+— ) does not or does lie between
\ 2a/

_(_
V&''' - 4ac ^„j _ Va^ - 4ac

2(j 2a

n. When the roots of ax^ + bx + c = o are imaginary,

J^ < 4ac

and idx ^ 2
^^^ tan( f^ + ^ )

in. When the roots of aj;^ + i^ + c = o are equal,

i^ = 4ac,

f ^£ =_c_^_V
J fljr*+ &jr + c \2a.r + 6/

provided the value of :r = — —-is not included in any range

of integration; i.e.

/« dx ^ _ r__2_^i«
J p ax'' -\-bx -\- c L 2ax + bJ^

provided p and q are both less than or both greater than

_b_ """

2(1

Integration by Partial Fractions.

Examples 5 and 6 are examples of a method of integration

known as Integration by Partial Fractions.

PW
If R(.r) = j=r)-T, where P and Q stand for polynomials in x, it is

often possible to express R(:r) as the sum of a series of simpler
fractions.
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An example will make the method clear.

(x - 2) (.r - 3)

Assume that R(;r) can be expressed thus

—

3--^ + 2 = A. _|_ B
(;i: — 2) (.r — 3) X — 2 X — 2

where A and B are constants to be found. This relation, if it

exists, is an identity, i.e. true for a// values oi x.

:. 3-r + 2 = A(jf - 3) + B(:i; - 2),

i.e. 3.r + 2 = (A + B);<: - (3A + 2B),

These are equal for all values of :tr, if

A+B = 3

and 3A + 2B = — 2,

whence A = — 8 and B = 11, so that

{
3X + 2 ^^ ^ //^£_ \ ^^ _ /C_8_\ ^^

J{x — 2){x — 2) JVjr — 3/ J\x—2/
= 1 1 loge(^ — 3) — 8 \0ge(x — 2) + C.

Exercise 13

I . Differentiate with respect to x.

[a) \oSe{x + >/i + x^}.

[b) log-e[{^ + V'^M^'}/«].

[c) {\0gexY-

(d) log:e(tan x).

/ \ 1 / /i — sin;<:\

+ siaxj

\
+ COSJtr/

{g) e" cosjc.

(A) gsina; cos^.

(t) logeV sinjc +logeVCOS*.
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2. What are the integral formulae corresponding to (b),

(e), and (/) above?

3. Show that

provided x^ > a^.

4. Show that

j^W+l?dx = W:^l+Z + ^ loge(^ + ^J+
"«

^).

5. Show that

^^^^^7^dx = £^^^^ - ^ log,(^ + ^f
-

'^-),

provided ^ > a.

6. Prove that

\'^2S^dx = ilog/*)log.(«6).

7. Integrate . ^
j(^+2)(^+3)2

8. Integrate , ^2

9. Integrate , «

^a:.

dx.

h + 2X^
dx.

10. A pendulum swings under gravity in accordance

with the equation

dfi^ I

provided the arc of swing is small, where B is the inclina-

tion of the pendulum to the vertical, g is the acceleration

due to gravity, and / is the length of the pendulum.

Find the complete solution of this equation.

If the pendulum is deflected through an angle 9 when
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t = o, and is just beginning to move, determine the

constants A and B (p. 186) in the complete solution of the

equation. Show that it executes harmonic oscillations of

period 27r./-.^ g
11. A small hollow cubical box floats in a lake. It is

ballasted with a layer of lead at the bottom so that one half

is immersed. Show that if it is pressed downwards a little,

and then left to itself, it will execute vertical harmonic

oscillations, to a first approximation.

If M is the mass of the box and a the length of the

side, find the period of oscillation. Why would the actual

oscillations not necessarily be truly isochronous?

12. In his investigations of the laws of motion of falling

bodies, Galileo first assumed that the velocity is propor-

tional to the distance moved through from the start.

Discuss the consequences of this assumption.

13. A copper condenser tube | in. outside diameter,

and jJg- in. thick, is 10 ft. long. Calculate the period of

transverse vibration, approximately, assuming the axis

of the tube bends into a parabolic form, and that the

potential energy of the tube when bent is proportional to

the square of the displacement of the axis of the tube

from its mean position.

If water is flowing through the tube, what eflfect does

the water "have on the period of vibration ?



CHAPTER XIV

Some Problems in Electricity and

Magnetism

" The little cheesemites held a debate as to who made the cheese.

Some thought they had no data to g-o upon, and some that it had
come together by a solidification of vapour, or by the centrifugal

attraction of atoms. A few surmised that the platter might have
something to do with it, but the wisest of them could not deduce the

existence of a cow."

—

Sir A. Conan Doyle.

In this chapter, we shall deal with some applica-

tions of the Calculus to electricity and magnetism,

but shall first consider a simple mechanical problem

which calls for the same kind of mathematical treat-

ment as the electrical problems require.

Consider a fly-wheel of moment of inertia I (Ib.-ft.^)

spinning about its axis at angular velocity fl radians

per second. Suppose the bearings and windage re-

sistances introduce a retarding torque proportional to

the actual angular velocity of the wheel.

It is convenient to measure time from the moment
when the motion begins, i.e. when the angular velo-

city (eo) is Q, i.e.

when i = o, w = Q.

The angular acceleration of the wheel at time t

seconds from the start is

dw
dt'

The bearing friction, &c., introduce a retarding
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torque proportional to w, say km poundals-feet where

K is a constant.

The accelerating torque is theretore

hence

where I is the moment of inertia about the axis of

rotation, by Newton's Laws of Motion applied to a

rotating rigid body;

i.e. I -J- + Kft) = o,

^^ do) , K ^
"•^ ^ + r = °'

where k/1 is a (known) constant, say X.

The equation ,aw
,

- , .

^ + ^" = °' (')

therefore determines the angular velocity « in terms

of t, subject to the fact that

ft) = Q, when i = o.

Equation (i) is a differential equation with constant

coefficients. Its solution has been indicated on p. 248.

The solution is ^ ^ ^^_,,^ ^^^

where A is an entirely arbitrary constant. This is

the most general function of t that satisfies equa-

tion (i).

But we are dealing with a real problem, and a result

with an arbitrary constant, to which we can give any
value we like, is not of much use.
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The conditions of the problem require that

to = Q (a known number), when ^ = o.

.•. Q = Ae-''^" by substituting in equation (2).

i.e. A = Q.

To keep our result consistent with the facts, we
must therefore give A the particular value fi (A being

now no longer arbitrary).

.-. o) = Q.e-^K

In this result, Q, and X are known from the data,

hence to is calculable for any given value of t.

We have therefore found a formula which tells us

how the velocity falls as time goes on.

The Electric Circuit.

Two experimental laws govern the flow of currents

in closed circuits.

(i) Ohm's Laiio.—When an electric current is flow-

ing along a wire, it experiences a resistance to its

flow, which is analogous to ordinary frictional resist-

ance, and electrical pressure is required to drive the

current against this resistance.

We can measure currents in amperes and pressure

in volts.

It is found experimentally that the pressure re-

quired to drive a current along a given wire is

proportional to the streng^th of the current.

If e is the pressure and i the current, then

e oc «,

i.e. e = ri,

where >- is a constant for the wire in question, r is

called the resistance of the wire.
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It is different for different wires, and depends on the

physical state of the wire, e.g. its temperature.

For a given wire, the resistance is the same for all

values of «", except in so far as the stronger currents

may affect the physical state of the wire, e.g. by
heating it and raising its temperature.

The experimental discovery that e <x. i for a given

conductor is known as Ohm's Law. The product

"r/" is often called "the ohmic drop".

(ii) Faraday's Laws of Indtiction.—Before we deal

with Faraday's Laws of Induction certain features of

the magnetic field must be described.

I. A magnetic N. pole repels another magnetic N.

pole with a definite mechanical force which is in-

versely proportional to the square of the distance

between the poles and directly proportional to the

product of the strengths of the poles.

Let m be the strength of one pole, and

m' ,, ,, the other pole;

then if F is the force of repulsion, and d the distance

between the poles,

c. mm' mm.'

d^

where ^u is a constant.

We will measure F in dynes, d in centimetres, and

define our pole of unit strength thus

:

Two poles are of equal and unit strength, if they

repel each other with a force of i dyne when placed

I cm. apart in air.

In these circumstances,

F = I, flJ = I, m = I, 7w' = I.

.'. M = I.
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/i depends on the medium in which the poles are

placed.

The unit pole strength is defined so that /* is unity

in air.

In what follows, we shall assume that the medium
is air.

2. A Magnetic Field is any region of space in

which a magnetic pole experiences magnetic attrac-

tion or repulsion.

Consider any point P in such a field (fig. i). Sup-

pose a N. pole of a magnet of unit strength is placed

Fig. I

at P. It will be urged in a certain direction with a

definite force. This direction is called the direction

of the field, and the force, the strength of the

field.

We can draw an arrow at P (P/) pointing in the

direction in which the unit N. pole is urged. An
arrow pointing the opposite way shows the direction

in which a S. pole is urged. It is therefore only of

interest to have the arrows for one pole. The N.

pole is always chosen.

Suppose we move from the point P to a neighbour-

ing point Q on the arrow at P.

At Q, the direction of the field may have altered.

Suppose it is given by Q^. Now move to a neigh-
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bouring point R on the arrow at Q. Kr is the direc-

tion of the field at R. We can continue in this way
to draw lines showing approximately the direction of

the field.

Now draw a smooth curve PS, having these

arrows as tangents.

When the steps PQ, QR, &c., are made pro-

gressively smaller and smaller, the curve PS will

tend towards a limiting position and to a limit-

ing form. This limiting curve has the property that

its tangent at any point is the direction of the mag-
netic field at that point. The curve is called a line

of magnetic force.

We can suppose the whole field to be mapped out

by a thread-like system of lines of this kind.

Consider a uniform magnetic field, in which the

lines of force are all parallel lines. Consider any
point P in it and a unit of area (a square centimetre)

having P as its centre in a plane at right angles to

the direction of the field at P.

The strength of the field at P is the force, in dynes,

which a unit N. pole at P experiences. Suppose this

is B dynes.

We can draw as many lines of force through the

unit area at P as we like. Suppose we draw B lines;

then B lines of force cut the unit area at P,

i.e. the lines of force per square centimetre of area,

perpendicular to the field, at P are the same,

numerically, as the strength of the field at P-

The uniform field is therefore represented by a

system of parallel lines of force, the number of which
is chosen so that B lines cross unit area perpendicular

to the lines, at any point in the field.
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Varying Field,

When the field varies in strength from point to

point, the lines of force will in general be curved, and

the number per unit area, perpendicular to the direc-

tion of the field, will also vary.

Even in this case, it can be shown that, by properly

choosing the number of lines to map out the field, the

strength of it, at any point, is given by the above
rule.

Oblique Plane Area in Uniform Field.

Suppose we choose any plane area, A sq. cm., the

normal to which is inclined at an angle e to the direc-

tion of the (uniform) field.

Then (see fig. 2) if PQ is the profile of the given

area and QR the profile of its projection in the plane,

Fig. 2

through Q, perpendicular to the field, the lines cross-

ing the area PQ must be equal to those crossing QR,
numerically.

Those crossing QR are

B X (area QR),
i.e. B X A cose.
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Hence the lines crossing any plane oblique area A
in a uniform field are

B„ X area of A,

where B„ is the component of the field strength along
the normal to A.

This quantity is called the magnetic flux through
the area.

The flux through any area having the same
boundary is evidently the same, as each line cuts

both areas.* The important thing is then the boundary

of the area, and we speak of the flux as " linked " by
the curve which forms the boundary of the area.

EXAMPLES

m.1. Suppose we have a single magnetic pole of strength

The strength of the magnetic field it sets up at P is given by

-- dynes,

where ris the distance of P from the pole m in centimetres.

Suppose we require the magnetic flux through a spherical

surface of radius r.

The direction of the field is everywhere normal to this surface.

.'. = 4ir/-^ ^ 3 ~ 4"""^ lines,

i.e. the surface is cut by i^Trin lines of magnetic force, and 477 lines

of magnetic force sprout out from a unit positive magnetic pole,

as they must all cut a spherical surface enclosing the magnetic

pole.

2. Suppose we require the flux through a portion of a spherical

surface, radius r, which subtends a solid angle m at ;«.

* Provided the two areas compared do not enclose a space con-

taining; magnetic matter.

(D102) 19
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Then, Surface given _ j*

Whole surface of sphere ^tr

/. = ^ X 4irr2 X — = OTfti lines.H 4-!r

Magnetic Flux through Circuit in Variable Field.

Now, let us suppose that the field is a variable one.

Let S be any area, AB (fig. 3), not necessarily

plane. Let 8s be a small area, at P, inside the

A

boundary of S. Suppose this area is small enough
to be regarded as a tiny plane area.

Let the field at P make an angle e with the normal

n to 8s at P. Then, the normal component of the

strength of the field at P is B cose, if B is the strength

of the field at P.

The number of lines of force crossing 8s is then

B cose 8s, and the number of lines of force crossing

the whole area S is

Lt fs B cose 8s\

the summation being taken over the whole area.

This limit, the existence of which we assume, is

denoted by /

I B cose ds.
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or, to show that we are dealing with a summation
over an area, by r r

I I B cosec^.

An integral of this kind is called a surface in-

tegral.*

This quantity—the magnetic flux—is the number
of lines of force crossing the whole area, i.e. the

number of lines of force tied up, as it were, by the

band AB, like stalks of wheat bound into a sheaf. It

is denoted by <^,

hence "^ = I B cose ds

= the surface integral of the normal

component of the field strength over

the surface.

Magnetic Fields due to Coils carrying Currents.

Oersted discovered, in the year 1820, that coils

carrying currents affect magnetic poles in their

neighbourhood and therefore set up magnetic fields.

The full development of these ideas was largely the

work of Ampere and Faraday. It was found experi-

mentally that the magnetic fields are in general very

variable from point to point, but that, if the medium
in which the field exists is air, the strength of the

magnetic field at any point is proportional to the

strength of the current in the coil, i.e. if the field

strength at a given point is 10 dynes per unit pole

* Here it must be noted j is not a sing-le number which passes con-

tinuously from one value to another. We cannot therefore indicate

the limits of the integral J B cose ds in the same way as we did with

ordinary definite integrals. We therefore make a special statement

of the area over which the integ-ral is to be taken.
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when the current in the coil is i ampere, it is 20 dynes

when the current is 2 amperes, and so on.

The flux through any coil in the field is therefore

proportional to the current in the coil which generates

the field. If 4>2 is this flux

<^2 oc i,

where i is the current in the generating coil,

i.e. <^2 = Kt,

where /c is a constant which depends on the shapes,

sizes, and relative position of the coils and the

number of turns on the generating coil.

It follows as a corollary that the flux <#>j passing

through the generating coil itself is proportional to i,

the current in the coil, i.e.

<^i = Kii,

where k^ is a constant which depends only on the

shape, size, and number of turns of wire on the coil.

The important point for us to remember is that,

for given coils in given positions, the magnetic flux

through any given one of them is proportional to the

current in the coil which generates the magnetic field.

Right-handed Screw Law.

Suppose H (fig. 4) is a straight line giving the

positive direction of some quantity which has a con-

stant direction, e.g. suppose H is a line of force, in

a uniform magnetic field. Let P be any plane per-

pendicular to H in which any closed circuit AB lies.

Suppose AB encircles the line H.
Then the positive direction in this circuit is

the clockwise direction when we look at the plane

of the circuit from the side E in the direction

of H.
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If P is regarded as a thin piece of board, and if

a screw is screwed into it at O from the side E, the

screw travels in the direction OH. The screw rotates

Fig-

4

and travels positively. This is the standard conven-
tion known as the Right-handed Screw Law.

Faraday's Law.

We can now deal with Faraday's Law of Electro-

magnetic Induction.

Suppose a coil lies in a magnetic field (fig. 5).

Faraday found by experiment that if the field is

changing in strength with time, then the coil A has

an electro-motive force induced in it by the action

of the changing magnetic field. This induced e.m.f.

is proportional to T—the number of turns in the

coil—and to the rate of change of the magnetic

flux through the coil. Further, it is in the nega-

tive direction in the circuit, as it tends to circulate

current in the coil in the negative direction of cir-

culation with regard to the field.

If e is the induced e^m.f., 4> the magnetic flux
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passing through the coil A, i.e. "linked" by the coil

A, and T the turns on A, then

numerically, i.e. ,

,

numerically, where /c is a constant; but as it is in the

negative direction of circulation we must give it the

negative sign, i.e. ^,
e = — kT-tt-

dt

If <!> is measured as described above, and is in

H

Fig-

5

[dynes per unit pole] X [square centimetres], and if e is

measured in volts, then k has the value lo"*, so that

^ (volts) = - io-«T^ (3) .

where -^ is the rate of increase of the magnetic fiux

through the coil.

Equation (3) is the mathematical expression of

Faraday's Law of Electro-magnetic Induction, in prac-

tical units.

The magnetic field may be due to a magnet or it

may be set up by a current in another coil of wire.



ELECTRICITY AND MAGNETISM 279

For instance, if the coil A carries a clockwise

current, when viewed from E, it sets up a magnetic

field in the direction shown (the corresponding posi-

tive direction) in fig. 6. The e.m.f. induced in B is

in the counter-clockwise direction (viewed from the

same point E).

The two equations

e = ri (4)

and e = — T^ (•()*

are of supreme importance in electrical engineering,

and underlie the action of all electrical machinery.

%

Fig:. 6

It should be noticed that they are both the mere sym-
bolical expressions of hard experimental facts, which
can be very easily verified with the simplest home-
made apparatus.

Self Induction.

But why should the coil B (fig. 6) be affected by
changes in the magnetic field produced by A any
more than the circuit A itself?

* The reader will bear in mind that in engineer's units (volts, am-
peres, &c.) this formula must always have lo"^ as a factor on the

right-hand side.
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The answer is that the coil A is also affected. The
coil A has an e.m.f. induced in it.

If (pi is the magnetic flux through A,

^ ^^ di

when Ti is the number of turns in coil A, in

series.

This e.m.f. of self induction, as it is called, acts

(negative sign) so as to tend to stop the current in A,

which is producing the magnetic flux
<j>i.

The magnetic flux linked with the circuit A, multi-

plied by Ta, per unit of current in A, is known as the

coefficient of self induction of A, and is denoted by L.

Hence, if i is the current in A, L« is the magnetic

flux passing through A and linked with A, multiplied

by Ta ; for the magnetic field set up by A is every-

where proportional to the current in A (an experi-

mental fact).

.-. Ta X (^1 = Li.

. rj. d<l^j _ jdi
• ^^~dt - ^d{

since, by experiment again, if the medium is air, L is

independent of z. L depends only on the shape,

dimensions, and number of turns of wire in the

coil A. For a given coil these are constant, and

if e is the e.m.f. of self induction, then

^ = -4 (6)

If e is measured_in volts, -r in amperes per second,

then L is measured in henrys.

The henry is therefore the flux-turns linked with
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a circuit A, when a cliange of current of i ampere per

second sets up an induced e.m.f. of i volt in that

circuit.

The Fall of Current in a Circuit.

Suppose a coil carries a steady currrent C amperes
(fig. 7), and that the battery in circuit is suddenly cut

out and a resistance cut in instead, we can find the

law for the decay of the current with time.

Fig. 7

Suppose we measure time from the instant of cut-

ting out the battery.

Let i amperes be the current after an interval

t sec. from this instant. Then the flux through the

coil is proportional to i, i.e.

^ = Ki lines,

and the e.m.f. of self induction in volts is

e - - 10-8 T^
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where T is the number of turns on the coil,

_ T
'^^

- ~ ^~d{

where L is the self inductance of the coil in henrys.

The minus sign simply means that this e.m.f. opposes

the flow of the current which generates the magnetic

field, i.e. it is a " back" e.m.f.

Suppose E is the applied e.m.f. in the circuit in

the direction in which the current is flowing. The
applied e.m.f., minus the " back e.m.f. of induction ",

as it is called, is numerically equal to the net e.m.f.

in the circuit in the direction of the current. This net

e.m.f. is, in its turn, equal numerically to the "ohmic
drop" by Ohm's Law. Hence we get the equation,

^ y di

where r is the resistance of the whole circuit.

But when the battery is cut out, E = o.

y dt
,

•• Lj, + ''^ = o,

di , r . ,.

dt +V = °' (7)

and i = C when i = o (8)

We have, then, to solve

di , r . , ^

dt-^V = °' (9)

subject to i being equal to C when ^ = o.

This is exactly the same mathemathical problem as

arose in the problem of the rotating fly-wheel, for r
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and L are constants, and the quotient of them may
therefore be replaced by a single constant, say X. The
only difference is that we have current i instead of

angular velocity to and our new X is a different con-
stant. Compare equations (i) and (2).

The complete solution is therefore

i = Ce->^K

Compare equation (2).

The similarity of the mathematical result is in-

teresting.

It suggests that (i) L is a kind of an electric

inertia corresponding to the mechanical moment of

inertia I; (2) r is an electrical resistance analogous to

mechanical resistance; and (3) the electric current is

analogous to angular velocity.

We know by mechanics that the kinetic energy of

a fly-wheel of moment of inertia I is

JIa,^

where w is the angular velocity.

By analogy, the kinetic energy of an electric cur-

rent should be it ^

This analogy is found to be tenable. We can

work out all the electrical phenomena of circuits by
the principle of the conservation of energy if we sup-

pose that:

1. The k.e. of the circuit is |L?^

2. (Resistance x current) is equivalent to a re-

tarding torque which deprives the system of

its kinetic energy.

3. Current is equivalent to angular velocity.
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The "retarding torque" takes energy out of the

system at a rate

(ri X i) watts.

(Compare koo y. w = torque x angular velocity, in

mechanics.)

Gain of energy per second = — ri'^, as it is a loss

and so negative.

at

. 1 di
,

.. L-n + rt = o.
at

We thus arrive at the same equation by mechanical

principles.

These analogies have been examined very closely

by physicists, and have been found to be more

than mere analogies. The whole theory of ordinary

mechanics and electricity can be brought under

one treatment of "generalized mechanics". These

mechanical analogies, being true ones, are most useful

in forming clear ideas of the behaviour of electric

currents. For instance, it should be difficult to stop

suddenly a current in a highly inductive circuit, just

as it is dangerous to try to stop suddenly a heavy

fly-wheel rotating at high speed. Every electrical

engineering student knows that a bad arc may take

place if the field coils of a direct-current dynamo are

suddenly opened, and that the usual field switch is

designed to throw a "kicking" coil, i.e. a resistance,

into circuit with the field coils when the source of

excitation is switched off.
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The reason for the arc is obvious from Faraday's
Equation.

The induced e. m.f. is proportional to -^, i.e. to

^, and if the current is suddenly broken, ^, i.e. the

rate at which the current changes, is very large, and
so the induced e.m.f. is very heavy. Several thousand
volts can easily be induced by the sudden breaking
of a highly inductive field circuit, and these pressures

may break down the insulation of the coils and put

them out of action until they are rewound—hence the

use of the kicking coil to avoid breaking the circuit

suddenly, and to dissipate the kinetic energy of the

field current gradually—not explosively as an arc

does.

Rise of Current in a Circuit.,

Consider the circuit sketched in fig. 8.

C is a cell; L, a coil of self inductance L henrys;

R, a resistance of r ohms (supposed large compared

r^^WVWV
B

Fig-. 8

with the internal resistance of the battery and the

resistance of the rest of the circuit, so that we may
suppose the total resistance concentrated in R). Let
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E be the constant pressure given by the cell. Sup-

pose the switch D is closed. The current begins to

rise.

Let i be its value at time ^ (^ = o at instant of

closing D).
di

Then the induced pressure opposing E is L-i^.

p, _ J
^« _ ("pressure available for driving

dt ~\ current against resistance.

.-. E -
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to t, and substituting in (10), we see that tliis equation

is a solution of tlie differential equation (10).

But i = o when t = o.

A +
r

•• ^ = ^v - ^
"- }

and every constant in this equation is known.
The graph of ;' in terms of t is as shown in fig. 9.

As t increases, e~£ = — clearly decreases, and

the higher the resistance the quicker the current

attains, practically, its maximum value, while the

t (seconds

i

Fig. 9

higher the self inductance, the slower is the rise in

current. If the coil is wound round an iron core the

flux produced by a given current is very much greater

than it is in air. Highly inductive circuits are there-

fore to be expected from coils wound on iron cores.
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EXAMPLE

Suppose a ring is made from a round bar of soft iron, 2 in.

diameter, so that the internal diameter of tlie ring is 12 in. Sup-

pose there are 500 turns of No. 18 B.W.G. copper wire wound
closely on it. Let this coil be connected through a key to the

terminals of a secondary cell of negligible internal resistance

and giving about 1-5 volts. The resistance of such a coil is

about I '3 ohms, and the maximum current

-^ = !• 15 amperes.

This current is not sufficient to cause "saturation" of the

iron, so that for all currents between o and i • 15 amperes, the

magnetic induction will be nearly proportional to the current

producing it for steady currents. If the iron is of low hysteresis,

we may suppose that changes in magnetic induction follow

closely changes in current and are proportional thereto. We
can thus give an equivalent self inductance to the coil. In the

case stated, it would be about i henry.

Suppose the circuit is completed.

— ( I — e'h' y at time t,

L = -r = '•3'

r 1-3

i = i'i5 (i — g-i") amperes.

Plot this curve and show that the current attains 95 per cent

of its maximum value in about 2-3 sec. This example has been

chosen to illustrate the order of magnitude of the different quan-

tities involved in a particular case where the current would rise

slowly. Coils with iron cores, such as that described, are used

as "choking coils" in alternating-current engineering. Another

example of coils in which currents change slowly when "made"
or " broken " is the field coils of dynamos. Slow rise or fall of

current is always associated with highly inductive circuits.

In actual fact, the current would not rise exactly in accordance

with the formula obtained above, because

:
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{a) Though the iron is unsaturated, the magnetic flux is not

quite proportional to the current producing it even under steady

conditions. If the iron is saturated when the full current is

attained, the flux is not even approximately proportional to the

current.

(b) The question is further complicated by

(i) Hysteresis, which causes the change in flux to lag

behind the change in current producing it.

(ii) Eddy circuits, which are induced in the body of the

iron and have a similar effect.

The formula is practically correct for coils in air, but r/L,

always has a much higher value than unity for such coils, and
so the current rises or falls very quickly indeed—under .^ sec,

say.

These time efliects go by the general name of transieiit pheno-

mena.

Damping of Instruments.

Consider a small body, such as the small magnet
carrying the reflecting mirror of a galvanometer.

Suppose, further, that the body is suspended by a

thread, so that when it is displaced from its position

of equilibrium the thread brings into play a restor-

ing torque proportional to the angular displacement.

Then the rate of angular deceleration is proportional

to the displacement. Accordingly, if Q is the dis-

placement,

— -^ = <)?Q {(It? a positive constant).

• • ^ + " ^ = °-'

A solution of this equation we know to be

= A sino)^, where A is any constant.

This is the most general solution which permits 6 to

(D102) 20
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be zero when t is zero. The motion is a simple har-

monic motion. Now, suppose there is, in addition

to the restoring torque, a drag on the needle, which

for small velocities is proportional to the angular

velocity of the needle (compare pp. 266, 267). This

drag will contribute an additional retarding torque

proportional to the angular velocity, say equal to

2K-r.' The equation for the angular deceleration of

the needle therefore becomes

rf^e dQ ^ 2.

'^dr^ + ^'dt + "'^ = ° ('')

Suppose that k is small, so that w > k.

Try as a solution of this equation,*

e = Ae-"' sins/ft)* - K^i. (12)

It will be found, on differentiating this expression

dO d^d
to find -jj and -^ and on substituting in (11), that it

does satisfy the equation.

This is the equation of damped harmonic motion.

K is called the " attenuation " constant.

The graph is of the type shown in fig. 10.

It is evident from (12) that the oscillations are

isochronous and of period

2 7r/V«2 _ ^2^ i,e_ oc" = c"c"' = &c., where

Oc" = ,

^"^
= T'.

* A tentative solution, such as this, is sug-g-ested by more advanced
considerations. It is not obvious and is not meant to be.
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Damping makes the time of swings a little longer

and gradually suppresses them. These conclusions

are obviously reasonable.

At the points B, B', B", &c., where the growth of

Fig. lo

Q reverses its sense, the tangent to the graph is

parallel to O/.

••• ^ = o at B, B', B", &c.

Another way of looking at this point is that Q in

Q = Ae-«' sinVco^ - K^t (13)

is the displacement of the needle from the zero line,

and dQldt is therefore the measure of its velocity.

When the needle is not moving any farther out-

wards, its velocity outwards must be zero.

.-. ^ = o at B, B', B", &c.

From (13) dQldt = o gives

Ag-"' {Vftj^ — K^ cosVco^ — K^t — K sin\/(B^ — K^ t] = o.
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Hence, if t' is the value of t which makes this

equation hold,

^'^^'^r^cosj^'^^t' = /c sins/a? - K^f.

.. tanvto — K t = —
K

•• ^ = V«^=zt|^^ + ^"-^ t^"—^—J' ('4)

where m is any positive or negative integer or zero.

This formula gives the values of Ob, Ob', Ob",

&c. (fig. lo).

Let t have the value t^ = Ob,

or i^ = Ob'.

By (14) /fa = 4 + , ^-—-^, on putting m = o

and I respectively. ^'^ "^

Hence, bB = Ae""'' sinVto' — /c^^i,

and ^'B' = Ae-''' sinVw^ - «:%

<''+vi^)<:;Ae"H"-V»T SI"p"'-4'+7^}]
-K(,

= Ae e ^•''-'''
sin{x/»'^ - /c^^j + tt}

-««,

= -Ae e ^"'-"''sinx/w^- /c^ifi.

.'. -To" (numerically)

= e ^Z"'-"' = e , X positive (15)

•• '°§^(||) = V^^2 = X (positive).

X is evidently the same for any other pair of half

amplitudes, e.g. b'B'/b"B".



ELECTRICITY AND MAGNETISM 293

From equation (13) it is clear that the "damped"
period is

hence the undamped period would be

T = ^^ (put /c = o in (13)).
(0

1 to Aft)

.-. T = ,
"^ X T' (16)

The object of deliberately "damping" an instru-

ment needle is to enable the instrument to be used

again after a reading, without having to wait a long

time for the needle to come to rest.

Since the damped motion is definitely related to the

corresponding undamped motion by the equations

already derived, we can easily calculate the undamped
motion of the needle from observation of its damped
motion.

Ballistic Galvanometer.

In the Ballistic Galvanometer, for instance, the

quantity of electricity held by a condenser can be

measured by discharging the electricity through the

instrument and observing the ensuing swing of the

needle on each side of the zero (neutral) position.

In this instrument

Q = /"Ta,

where Q is the quantity of electricity discharged in

coulombs,

w, a constant for the instrument.
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T, the undamped period of oscillation of the

needle,

and a, the maximum undamped swing of the

needle following the discharge.

Let a be the first observed deflection (damped)
on one side of the zero,

and /3' be the first observed deflection (damped)
on the other side of the zero,

and let T' = period of oscillation of the needle

(damped),

a', j8', and T' are all observable quantities.

To connect these with T and a, we may proceed

thus:

-4^

The motion of the needle is given by

= Ae-^'sinx/ffi^ - ,^t.

Let ^1 be the time when the first maximum swing
takes place.

Then „' = Ae-'' sin v/o?^^'
i?i

= Ae""*! sin
-j
arc tan

[

putting w = o in (14).

.-. a = Ae-'''^-^^ = -e-"'',
to ft)

where Q is the initial value of dQjdt (last line

of p. 291), which is the same whether there is

damping or not. To find a, we put k = o,

.. a = — , or a = ae''i.
ft)
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•*• Q = yuTa

We now have to get rid of e'K

a' ''

We have -^^ = e ,

where X = , "^ , by (15).
N/ft)2- .2

A 1 ^ I ^ y/io^ - I?
Also 4 =

/ „ arc tan

X ^ It= — arc tan^.
KTT X

. . y = yu 1 a C'f *

If — is very small, we have, since ;r is very large,
TT X

arc tan- = - nearly.
X 2 -^

.-. Q = (KTde\

= /* T' a'y-^ nearly (17)

since a/^ = e^ and T is very nearly equal to T'.

This result gives Q in terms of the measurable

quantities r^., ' o'

and /u., the constant of the instrument.

The only approximation made in this calculation is

that X is small compared to ir, i.e. the damping is

slight.
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Exercise 1A

1. A fly-wheel of moment of inertia I is spinning about

a shaft at angular velocity i2.

It is then brought to rest by a retarding couple propor-

tional to its angular velocity.

Show that its speed falls in accordance with the equation

I- + ^a. = o,

where w is the angular velocity at time / and /i is a

constant.

Solve this equation, and find the value of the arbitrary

constant in the solution, in terms of fl.

If the fly-wheel is 6 ft. in diameter and has a mass of

I ton, find the value of /* necessary to bring the fly-wheel

to half-speed in 5 min., if fi = 150 r.p.m.

2. Show that, if an electric circuit lies in a magnetic

field so that it embraces a magnetic flux <^, the change in

the magnetic flux taking place in an interval of time

{/<, — /,) is proportional to the amount of electricity dis-

placed round the electric circuit, and is given in absolute

electromagnetic units by

"^2 - <^] = q^Q.

where <^, is the magnetic flux at time t^, ^j at /j, Q the

quantity of electricity which flows past any section of the

circuit in the interval (4 — ^i)>
'' the resistance, and T

the number of turns of the circuit.

3. Using the result of question 2, show that, if a bal-

listic galvanometer is used to measure the amount of elec-

tricity displaced in the circuit, then the change of magnetic

flux = /itt where o is the first observed deflection on one

side of the zero, and /i is a constant for the circuit, in-

cluding the galvanometer.

4. A straight solenoid lies with its length in the direc-

tion of a uniform magnetic field in air of 100 lines per
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square centimetre. The number of turns on the solenoid

is 500 and its diameter is 7-5 cm.

The solenoid is connected to a ballistic galvanometer

and is turned suddenly through a right angle.

The first fling observed on one side is 65 divisions.

Find the change of flux per scale division. If the re-

sistance of the circuit were halved, what would be the

observed fling, assuming no damping eff'ect.

5. A coil of wire consisting of 100 turns of fine wire,

the diameter of the coil being 4 cm. and its resistance

50 ohms, is situated in a magnetic field of 100 lines per

square centimetre. This field is reduced to zero at a

uniform rate, the total time taken to reduce it being a

tenth of a second. Calculate the magnitude of the current

induced in the small coil in amperes.

6. A coil of 20 turns of wire in the form of a circle

30 cm. in diameter, rotates 2000 times per minute about

a vertical diameter. Find the maximum e.m.f. in volts

induced in the coil. (Horizontal component of the earth's

magnetic field = -iS lines per square centimetre.)

7. In the ballistic galvanometer, when there is no

damping, the equation of the motion of the needle (com-

pare pp. 289, 290) is

where the notation is the same as in equation (n) above,

h being a constant and i the current.

Integrate this equation, subject to the conditions that

i is constant and that Q and -y- are o when t is o. Prove
at

that /' is proportional to the extreme deflection, and that

the needle always keeps to the same side of its undisturbed

position.



CHAPTER XV

Some Problems in Chemical

Dynamics

" The idea of an atom has been so constantly associated with in-

credible assumptions of infinite strength, absolute rigfldity, mystical

actions at a distance, and indivisibility, that chemists and many other

reasonable naturalists of modern times, losing: all patience with it,

have dismissed it to the realms of metaphysics, and made it smaller

than ' anything we can conceive '. But if atoms are inconceivably

small, why are not all chemical actions infinitely swift?"

—

Lord
Kelvin (1870).

The extract at the head of this chapter, which is

taken from an article Lord Kelvin wrote on Atoms
(Nature, March, 1870), gives an idea of the state of

atomic theory in 1870. The position to-day is:

Number of molecules in i c. c. of any\_ ,., w ,9

gas at 0° C. atid 760 mm J

Number of molecules in i gm. molecule"! _
f;

. w ,n23
of a gas /

Average distance apart of adjacent"! ^. »,°, ^ , '^
•' l-=3Xio° cm.

molecules at 760 mm. ]

Mass of the hydrogen molecule ... = 3.3 X lo"^* Rrn

Averagevelocity of hydrogen molecules"! _ ,5 ^ ^j, -g^ sec
ato°c / y •

H

Radius of hydrogen molecule (con-"!_ ,.2x10-8 cm
sidered as a sphere) ... ... .../
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These numbers* are taken, with slight modifica-

tions, from Jean's Dynamical Theory of Gases (1916),

and show the great strides that have been made in

fifty years in atomic theory.

It is interesting to compare these figures with Lord
Kelvin's estimate in 1870. He found that

{a) The radius of a molecule of a gas could not

be less than io~^ cm.

(b) The number of molecules per normal centi-

metre could not be greater than 6 x 10^^.

Subsequent research has evidently confirmed both

of these predictions.

The first measurement of the velocity of a chemical

reaction was made about 1850 by Wilhelmy, who
measured the rate of inversion of cane sugar by acid.

The first step towards a satisfactory explanation of

what governs the velocity of chemical reactions was
taken by Guldberg and Waage when they established

their celebrated law

—

The Law of Mass Action.

Many compound gases are found to decompose into

their elements if they are left standing sufficiently

long. The decomposition is measurable within a

reasonable time if the gases are kept within suitable

temperature limits. Among the many instances which
have been carefully studied is arsine, AsHs (Van 't

Hoff, Studies in Chemical Dynamics).

* Such numbers are often curiously printed—for instance,

2'75 X lois appears as 2-75 X 10''.

The important figfure is the index, and the memory is helped by
thinking' in a. logarithmic notation. Thus

—

Log. number of molecules per normal c.c. ... ... =19
Log. radius of molecule ... ... ... ... = — 8,

and so on.

It is natural then to find log, mass of molecule ... = — 24.
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Suppose a vessel A contains arsine (fig. i). The
vessel is connected to a pressure-gauge CF, which can

Fig:. I

be raised or lowered bodily so as to maintain the gas

at constant volume. The pressure-gauge reads any

change of pressure which may occur. The vessel A
is heated to a fairly high constant temperature, say in

the vapour of boiling diphenylamine (310° C). Ini-

tially A contains only arsine. As time goes on, the

pressure is found to rise (at constant volume and
temperature), indicating that something must have

happened to the molecules in A. If the number of

molecules in A had not changed, there could be no

rise in pressure at constant volume and temperature.
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Further, free hydrogen is found to make its appear-
ance and there is no evidence of atomic hydrogen.
A mirror of arsenic is deposited on the walls of the

vessel.

The simplest molecular equation which would ac-

count for these experimental facts is

zAsHg = 2As + 3H2.

Arsenic cannot exist as a vapour at 310° C. and
approximately atmospheric pressure, and therefore it

condenses out and is deposited as a mirror on the

walls of the vessel. The equation indicates that for

every 2 molecules of arsine which disappear we get

3 molecules of hydrogen.

Let n be the number of molecules of a gas X per litre,

m, the molecular weight of the gas,

w, the mass of the hydrogen atom, in grammes;
then nniw is the mass of the gas X per litre in grammes.

/, nw = the mass of the gas X per litre in gramme-mole-
cules, i.e. when the molecular weight in grammes
is taken as the unit mass instead of the gramme.

The gramme -molecule is often called the "mol". Hence the

mass of X per litre in "mols" divided by the mass of the hydrogen

atofti (a constant) is the number of molecules of X per litre.

It is usual to measure all masses in chemical dynamics in mols, i.e.

we use a different unit of mass for different substances, the unit

mass used being the molecular weight in grammes. The masses so

measured are proportional to the number of molecules present per

litre, and the constant of proportionality (w) is the same for all sub-

stances. The mass of X present in mols per litre is called the con-

centration of X. This numberjs proportional to the number of mole-

cules in unit volume. At a given temperature and pressure, all gases

have the same concentration, by Avogadro's Theory.

Let a be the original concentration of AsHj at

time t = o,

and X, the amount (in mols per litre) of AsHg
transformed in time t.



302 APPLIED CALCULUS

Then {a — x) is the concentration at time t,

and
-'^ + ^ - ^ = t, (0

where p is the pressure at time t,

and/>o ,, „ t = o (i.e. at start),

since, by the kinetic theory of gases, the pressure at

constant temperature and volume is proportional to

the number of molecules present.

X = 2a{^—^\ (2)

That is to say, the rise of pressure is directly propor-
tional to the amount of AsHg decomposed.
The change in pressure therefore gives a direct

measure of the progress of this reaction.

Dissociation might arise in two ways:

(a) By collision of pairs of AsHg molecules.

(b) By a kind of molecular explosion.

In the former case, at least two molecules must
take part in each collision; while in the latter, a

single molecule is alone concerned in each explosion.

In the former case, the dissociation could be

perhaps expressed by

2ASH3 -)• 2As + 3H2 (3)

while, in the latter, we might have

AsHa ^ AS + 3H (4)

the free hydrogen atoms uniting in accordance with

the equation,

6H -^ 3H, (5)

As there is no experimental evidence of the presence

of atomic hydrogen, it must be supposed to become
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molecular hydrogen with great rapidity if it is formed

at all, and the reaction as a whole must be dominated

by AsHa -> As + 3H,

the reaction 6H -> 3H2 going on much more quickly.

The essential difference between equation (3) and

equation (4) is that in the former two molecules of

AsHg take part in each discrete transformation,

whereas in equation (4) one molecule of AsHj only

is involved. The resulting products are the same
in both cases, namely, deposited arsenic and hy-

drogen, mixed with undecomposed arsine. The two

cases can be distinguished by considering the in-

fluence the number of reacting molecules has on the

speed of the reaction.

Number of Reacting Molecules.

Suppose there are Ua molecules of a gas A and n\, of

a gas B per litre. The number of collisions between

pairs of molecules per second must depend on «„

and fii.

Suppose Ma is doubled, without altering the mean
velocity of the A and B molecules (i.e. suppose the

partial pressure of the A molecules is doubled).

There will then be twice as many molecules for each

of the B molecules to run into, and if the ratio which

the number of actual collisions leading to dissociation

bears to the number of possible collisions does not

change, there will be twice as many collisions with

accompanying dissociations per second.

Now, suppose rii, is also doubled. There will now
be four times as many collisions per second, i.e. the

number of collisions with dissociation per second is

proportional to Ua x «&.



304 APPLIED CALCULUS

There is no reason why A and B should be essen-

tially different molecules. The point is that the

number of bimolecular collisions with dissociation

per second is proportional to «„ x n},.

If fia = nb, the number of bimolecular collisions

with dissociation per second is proportional to «a^.

In the same way, the trimolecular collisions with

dissociation per second would be proportional to

Ha X «6 X nc, and the wz-molecular collisions to

Ha X ni, X ... to m factors.

Now, the number of collisions with dissociation per

second gives at once the amount of A (or B or C)

which appears (or disappears) per second.

Let X be the concentration of A at time i.

Then nw = x, where n is the number of molecules

of A per litre, and w the mass of the hydrogen atom,

in grammes.

.'. n = —, w being constant.

/Tff

Now, -J- is the rate at which molecules of A make

their appearance, hence -r. new molecules of A ap-

pear in the gas per second, and if each one arises

from a collision, then ^ is the number of collisions

with dissociation per second.

Since n = —,
w

dn I dx , . ^ ^
^=- = —,-., w being constant.
dl w dt ^

dx
But -j7 is the rate at which the concentration of A

at ,

increases per second, i.e. -r-. measures the speed at
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which the reaction goes forward, and it is propor-

tional to the number of collisions with dissociation

per second. As the number of collisions with dis-

sociation per second must be proportional to

Wa X M6 X ... to m factors,

for a reaction depending on a wj-molecular collision,

we have

I dx— J- oc «a X «(, X . . . to w factors,
mat

i.e. -r. = K{na X nj, y. ... torn factors), ..(6)

where /c is a constant which is called the reaction

constant.

In the case of arsine, then, if the dissociation is

bi molecular, and if x is the concentration of arsine

at time t, we get

-ft = ^^' (7)

(The negative sign arises because arsine is dis-

appearing.)

If the reaction goes forward as a series of mono-
molecular explosions, the number of explosions per

second will depend on the number of molecules per

litre, and it is reasonable to assume that by doubling

the number of molecules present, we should double

the number of explosions, i.e. if x denotes the number
of mols of A present per litre at time t, then

— —-, the speed of the reaction, is proportional to «„;

dx •

i.e. — -77 is proportional to x;

i.e. ^ = Xx where X is a constant (8)
at

(D102) , 21
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The equatibns (7) and (8) are the mathematical ex-

pressions for the two cases, and are governed by
the one rule:

Velocity of reaction is proportional to

Ma X «(, X »c X •••••(9)

This relationship is known as the Law of Mass
Action. It was enunciated by Guldberg and Waage.
In words, it may be put:

The velocity of reaction is proportional to the

product of the concentrations of the reacting

molecules.

The law can be deduced directly from the principles

of thermodynamics.

Equation (9) is the simplest way in which the law

can be stated, and is the key to many formulcc of

chemical dynamics.

Collecting our results, we see that if AsHg decom-
poses, by collisions, in accordance with

2ASH3 -> 2As + 3H2,

i.e. AsHs + AsHs -> 2As + 3H2,

the law of mass action gives the velocity of the

reaction as /Va-

S = --^ (-)

where x is the concentration of arsine at time t, and

/c is a constant (for the particular temperature of

the experiment).

On the other hand, if the reaction is governed by

AsHg -^ As + 3H,

we should have
dx

,

Si = -^''' ^")
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where \ is a constant (for the particular temperature
of the experiment).

Equations (10) and (11) are different, hence the

Law of Mass Action gives us a means of testing

whether the reaction is monomolecular or bimole-
cular.

If equation (10) holds, we get

dt_ _ _ I

dx ~ x^'

Kt = - j^^dx + c,

i.e. Kt = —\- c.
X

To find c, we know that when t = o, x = a, the

initial concentration. .

Hence o = —\- c.
a

I

c = ,

a

and kI = )

X a

i.e. t = l(i-i) (12)
K\x a) ^ '

If equation (11) holds, we get

--dt-^""'

^dt I

'•^- -^Tx^ X

:. —\t = \og^x + c.
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To find c, we know that when i = o, x = a.

.'. o = \ogea + c.

.'. C = — logeO.

•-^ = ^M3 ('3)

We thus get the two equations,

K = - ( ) if (lo) holds,
t \x aJ

''^ = i-M-') (H)

andX = ^ loge(-) if(ii) holds.

To test these equations, we require data of x and t. These
data have been obtainei experimentally (see textbooks of Physi-

cal Chemistry or Van 't Hoff's book already referred to).

An experiment gave

Time in Hours. Pressure (mm.)**

O 784-84

3 878-50

4 904-05

5 928'02

6 949-28

7 969-08

8 987-19

EXAMPLE /

From these data calculate

:

(i) The ratio ajx by equation (2),

(3)ilog.©.

* Lehfeldt, A Textbook ofPhysical Chemistry.



PROBLEMS IN CHEMICAL DYNAMICS 309

and see whether (2) or (3) is more nearly constant over the range
of the experiment.

What conclusion do you draw from your result?

EXAMPLE //

As another example of a gas reaction, we will consider the

decomposition of phosphine.

The molecular reaction would be

4PH3 -> P4 + 6H2,

if phosphorus is present as vapour. Molecules of phosphorus
are tetra-atomic at temperatures considerably above the boiling-

point of the element. They become diatomic at very high tem-
peratures. If, however, the temperature is not very high, the

reaction might go forward as

PH3^ P + 3H; (is)

then 4P -^
and 2H —

>

h'J
'-'

the latter two reactions being assumed to be very rapid compared
to the first.

Test which set of equations is the more likely from the

following data:

—

Time in Hours.
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A Reversible Reaction.

As an example of another, and more complicated,

type of reaction, take the decomposition of hydriodic

acid.

When hydriodic acid is left standing it dissociates

into hydrogen and iodine, and the dissociation can

be measured if the gas is kept at a suitable tempera-

ture, so that the dissociation is neither too fast nor

too slow. If the gas initially consists solely of hy-

driodic acid, the reaction proceeds until a certain

percentage of the acid is decomposed. It then

ceases.

Similarly, if we start with hydrogen and iodine

vapour in molecular proportions, these gases combine

until a certain definite percentage of hydriodic acid is

present. This percentage is the same as that attained

by dissociation, and depends only on the temperature

of the reaction.

The molecular equation is

2HI = H,+ U ('8)

If a is the initial concentration of the hydriodic acid

and X the amount transformed in time t, (a — oc) is the

concentration of hydriodic acid at time t.

Hence, if equation (18) represents the reaction, we

h^^e 2HI -» Ha + I2

as the equation of dissociation, and

f = ^(«--)^ <'9>

by the law of mass action.

But at time t we have molecules of hydrogen and

iodine present, and there appears to be no reason
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why these molecules should not recombine in accord-

ance with the law of mass action. The experimental

fact that the reaction is reversible supports this idea.

When X mols of HI have dissociated we have

~ mols of H2 and — mols of Ig present,

and by recombination they unite to decrease x, so

that the time rate of increase of x is not «(« — x),^ but

Tt
= Kia-x)^-— (20)

Equilibrium would be reached when

dx
di = °'

i.e. if ^ = Xe for equilibrium,

K{a — Xef = ,

I.e. -Ei ^

—

'— = fi where yu = - = a constant,

or

Xc"
'

K

a — Xe _ VyU.

Xe 2

i.e.— = a constant (21)
a

At a given temperature, then, a constant fraction of

the original HI should be transformed, and this frac-

tion is independent of the pressure of the gas used in

the experiment (i.e. of a). It is easy to show that

the final or equilibrium composition will be the same,

whether we start with pure hydriodic acid or with

a mixture of hydrogen and iodine vapour in mole-

cular proportion.
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Bodenstein found at 448° C.

:

Original pressure, HI
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This integral can be evaluated by substitution in one of the

general formulae given on p. 262, but it is more instructive to

work it out independently, by the method of partial fractions.

D ^ I A
,

B
Put ^ =-^ = + -j-

(a — xy — pV a — X — px a — x + px

To find A, multiply both sides by a — x — px, and then put

a — X — px = o, i.e. give x the value a/{p + i). The term in B
vanishes, and we get,

A = value of 1 , when x

Similarly, B
2ap

a — x -\- px C+i

2ap
'

p— I

Hence from equation (23),

j 2ap a — {p -\r i)x J 2ap a + (p— i)x'

Now, at the start, {a — xY — pV has the value a^, and the

reaction goes on till it has the value o. /. (a — x)^ — p'^x^ never

becomes negative, so that «—(/) + i)x and a + (p — i)x sire

positive.

Thus Kt = -I-

I

_ log{a - J+'ix) + log(a + J^^ix)
j ^

= -^ log^ + i^I'i^-

2a a — (p + i)x

(The student may easily verify by differentiation that this result

leads to the value of -=- given above equation (22) ; he will see at
ax

a glance that the result also gives ^ = o when x = o.)

Thus/ = -L= log/ + '•;- ')^
(24)

oVkX ^'a-(p+i)x

where p = i ^-•

This equation gives the time required for x mols per litre of

HI to be transformed into H2 and I^.
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Numerical Calculation.

Some experiments by Bodenstein gave, at 440° C, the time

being in seconds,

K = 0-00503, X = 0-365.

•'• " = ^\/^ = 4-26.

Suppose we start with a litre of HI vapour at 440° C, and
760 mm. pressure.

I litre of hydrogen at 0° C. and 760 mm. weighs 0-0899 gm.
.'. I litre of hydrogen at 440° C. and 760 mm. weighs

0.0899 X Hi g"i-

The concentration of hydrogen, and therefore of HI also, at

440° C. and 760 mm., is thus 0-0899 X f^J X J or 0-0172 mols

per litre.

.". a = 0-0172,

and ——= = 1360.

The formula (24) now reduces to

t = 1360 log,
0^0172 + 3:265

( )
•^ ^'0-0172 — s-26;r

This is the equation we require connecting the time {t sec.)

with the amount of HI decomposed {x mols per litre).

The equation gives a finite value of t for any value of x up to

that value which makes the denominator on the right zero.

The final state (only reached, theoretically, after an infinite

time) is given by the equation

0-0172 — 5-26^; = o,

or jr = 0-0033.

From this value of x, we get

£ X 100 = °-°°33 X 100 = 19,
X

X. 100 =
0-0172

so that when equilibrium is reached 19 per cent of the original

HI has been decomposed. (Compare with the experimental

figures for a slightly different temperature on p. 312.)

The time required for a given fraction of the HI, say 10 per

cent, to decompose can be found readily from equation (25).
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If X = ^ X 0-OI72, we have

i = ,36olog,i±^^

= 1360 X 2-303 logit,!^
0-474

= 1400.

The time is therefore 1400 sec. or 23 min. 20 sec.

Calculating similarly, we get the table

:

Per cent Decomposi-
tion of HI. Time.

O O

5 10 min. 20 sec.

10 23 min. 20 sec.

15 44 min. 16 sec.

19 (equilibrium).

EXAMPLE

Trace the reaction in the opposite direction, starting from a

mixture of hydrogen and iodine vapour in molecular proportions,

and noting that the physics of the reaction in either direction is

contained in the equation

^fCni) = XCh,Ci, - k{CbiY.
at

Prove that if a is the initial concentration of hydrogen, and

therefore also of iodine, and if ;i; is the amount of each transformed

in time t,

Jll = \(a - xf - iLKx"^,

at

whence- =
\
— ^ = (26)

2 70 X(a — ar)^ — 4 k.x''

Taking X = 0-365

and 1 = 0-00503, at 440° C,

express ^ as a function of x, and plot a curve of the amount of

HI present as time progresses.

Find the "equilibrium " percentage of HI and compare it with

the value previously obtained.
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Exercise 15

1. Rutherford and Soddy found that the activity of

Thorium X fell off with time in accordance with the

following table :

—

Time in Days
from Start. Activity ofTh X.

2 lOO

3 88

4 72
6 53

9 29-5

lo 25-2

13 '5-2

15 "•'

The unit of "activity" is an arbitrary one, but the

readings are proportional to the concentration of Th X.

Show that this reaction is a monomolecular one.

2. Cane sugar decomposes, in aqueous solution in the

presence of a catalytic acid, into dextrose and laevulose,

in accordance, quantitatively, with the equation

C12H22O11 + HgO —> C^HjaOg + CgHjjO,,.
dextrose. laeviilose.

The substances on the right and left respectively ro-

tate a beam of polarized light in opposite directions, and

hence, as the reaction proceeds, the observed rotation of

the beam of light decreases. The reaction can therefore

be studied with the polarimeter. The following are the

results of an experiment (Lewis's Physical Chemtstty):—
Time (min.). Concentration.

O O

30 I'OOI

6o' i'946

90 2*770

130 3-726

180 4.676

The initial concentration of cane sugar was io«o23.



PROBLEMS IN CHEMICAL DYNAMICS 317

What conclusion do you draw as to the number of

reacting molecules, and how do you reconcile your con-

clusion with the chemical equation?

3. An aqueous solution of dibromosuccinic acid trans-

forms monomolecularly in accordance with the equation

C^H.O^Br^ -> C^HgO^Br + HBr.

The reaction constant at 15° C. is 0'00ooog67; at 101° C,
0'03i8, when time is measured in minutes.

Show that the time required to transform half the

dibromosuccinic acid initially present is about seven

weeks at 15° C, and less than half an hour at 101° C.

(Van 't Hoflf).

4. Phosphine decomposes quantitatively in accordance

with the equation

4PH3 -^ P, + 6U,.

An experiment by Konig gave

Pressure of Gaseous
Time (hr.). Mixture.

o 7i5'2i mm.
7-83 730-13 M
24-17 759-45 ..

41-25 786.61 ,,

63-17 819.96 ,,

89-67 855-50 „

Examine these data with a view to settling whether the

reaction is quadrimolecular, as the chemical equation sug-

gests, or monomolecular. Write equations which you

suggest represent the true course of the reaction.

5. It was shown by Fick that the "concentration gradi-

ent" is the quantity that determines the drift or diffusion of

molecules in a solution. He found that the amount of the

solute that would drift in unit time, normally across unit

area, under a "concentration gradient" of unity, is a

constant for a given temperature. This law is called

Pick's Law, and the constant, the diffusion constant, D.
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Assuming this law, show that the differential equation

governing the change in concentration of a solution which

arises from diffusion is

S = °g <)

where c is the concentration and / the time, supposing the

diffusion to take place in one direction x.

(a) Assuming D is constant, show that one solution of

the equation is

Cq + ae-Dii2( smnx,

where c^, a, and n are constants.

(b) Find the values of n for which the concentration at

X = o and :*; = / is independent of /.

m
(c) Show that Cq + 2 Orfi-^'^'- sinnx is also a solution

of the equation, where 2 stands for the sum of all the sine

terms got by putting n = i, 2, 3, . , . m.

Equation (i) also occurs in the theory of the conduction

of heat. The solution given above is one of Fourier's.



CHAPTER XVI

Some Problems in Thermodynamics

" Economy of fuel is only one of the conditions a heat-engine must

satisfy; in many cases it is only secondary, and must often give way
to considerations of safety, strepgth, and wearing qualities of the

machine, of smallness of space occupied, or of expense in erecting.

To know how to appreciate justly in each case the considerations of

convenience and economy, to be able to distinguish the essential from

the accessory, to balance all fairly, and finally to arrive at the best

result by the simplest means, such must be the principal talent of the

man called on to direct and co-ordinate the work of his fellows for the

attainment of a useful object of any kind. "

—

Sadi Carnot, Reflexions

sur la Puissance Motrice du Feu (1824).

There is no hard and fast line between the three

conditions or phases in which it is convenient to

regard matter as existing, namely, the solid, the

liquid, and the gaseous. Thus, at ordinary tempera-

tures, a lump of steel is solid; it can support a
tensile stress, within limits, without any tendency

to permanent change of shape. A liquid, such as

water, cannot do this. A gas, such as hydrogen,

shows no tendency to become liquid at ordinary

temperatures, no matter how much pressure is ap-

plied to it. On the other hand, if the temperature

of the hydrogen is very low, it tends to liquefy if

the pressure is sufficiently increased, and in the so-

called "critical" state, it appears to be very hard

to decide whether the substance is definitely liquid

or definitely gaseous.
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Steam is another instance of the intermediate stage.

It is difficult to determine whether a volume of

"steam" is gaseous steam or atomized water.

A substance which is definitely gaseous under all

conditions which we are considering, we shall call

"a gas". Such gases are hydrogen, oxygen, nitro-

gen—so-called "permanent" gases—under ordinary

conditions of temperature. Others, such as water,

when in the gaseotis form, we shall call vapours,

thereby implying that the substance does not obey
the simple gas equation pv = Kd, and that lique-

faction or even solidification may take place.

State.

In thermodynamics, we frequently refer to "the

state of a body ". This phrase denotes the physical

and chemical condition of the body. To have a clear

idea of the physical and chemical condition of a body

we need information on the following points:

—

(i) What is "the body" made of? Is it iron,

hydrogen, &c.?

(2) Is the chemical nature of the body permanent?

If it were hydrochloric acid vapour, for

instance, it might change into hydrogen

and chlorine.

(3) How much of it is there (its mass, as

measured by its weight)?

(4) Where is it (its position in space)?

(5) Is it in the solid, liquid, or gaseous form, or

partly one, partly another, as in a partially

condensed vapour?

(6) What are its dimensions? What is its

volume, if it is a gas?

(7) Is it at rest or in motion?
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(8) Is it in a state of stress? What is its pressure

if it is a gas?

(9) Is it magnetized?

(10) Is it electrified?

(11) How hot is it (its temperature)?

(12) Is it self-luminous, or sending out radiation

of any known kind?

It is evident that, in general, a great deal of infor-

mation is required in order to know the "state of a

body ".

We can greatly simplify the problem in certain

cases:

(i) The body we are thinking about may be a

definite amount of a specified gas, say

nitrogen.

(2) We may be examining what happens to it

in the gaseous state only. The equation

pv = R'0 then holds very closely.

(3) It may not be subject to any electrical or

magnetic influences, or to influences arising

from radiation of any kind, so far as we
can tell.

(4) Experiments show that ordinary nitrogen

remains ordinary nitrogen over a very wide

range of change of temperature and pres-

sure.

(5) The body of gas considered may not alter

its position appreciably relative to the earth,

so that its potential energy, due to its

weight, does not change appreciably:

(6) The body may be at rest as a whole.

These restrictions eliminate all the questions except

(6), (8), and (11), and its "state" is therefore known
(D102) 22



322 APPLIED CALCULUS

when its dimensions (volume v), its state of stress

(pressure />), and its temperature 6 are specified.

We may therefore say that the state of this body

(a given mass of a permanent gas) depends only on

its pressure, volume, and temperature.

Functions of Two or More Variables.

In the preceding chapters we have dealt exclusively with func-

tions of a single variable. In this chapter, we shall have to

consider some simple functions of more than one variable.

The area of a rectangle is given by the product of its length

and breadth.

If A stands for the area in square inches, I for the length and

b for the breadth in inches,

A = lb.

The area depends on both the length and the breadth. These

quantities have no relation to each other since we can vary either

of them without necessarily affecting the other. They are said

to be independent variables.

Keeping the length constant, if we vary the breadth, we vary

the area; keeping the breadth constant, if we vary the length,

we also vary the area.

If we vary the length and the breadth, we may or may not

vary the area (e.g. halve the breadth, double the length, and we
get no change in the area ; but double both length and breadth

and we get four times the area).

If a quantity w depends on the independent quantities x, y, s,

&c., in such a way that changes in the values of any one of the

quantities x,y, s, &c., are accompanied by changes in the value

of w, w is said to be a function of x, y, z, &c. , and in conformity

with the notation for functions of one variable, we write

w =/(*> J>'j ^. &c.);

w = f(x, y) = x^ -^y^, say, then

and /(at, a) = x^ + a^,

and so on. (Compare p. 25.)

We can find the derivative of a function of several variables.

and if
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with respect to anyone of them, by the methods already given for

a single variable ; for in variations with respect to one of the

variables, the others, being independent, are necessarily con-

stant. So far, then, as differentiation with respect to any one

variable is concerned, the function becomes one of a single

variable.

For instance, if

then^*= Lt r/(-r + A.,^)-/(.r.^)-|

ax Ax —>• oL A-t -•

EXAMPLE

Let K) = :c^ -f" J'^ = y(^1 J')-

Let the change in x be A.r.

jC, of course, does not change as we are changing x, notjy, and
X and J/ are supposed to be independent variables.

.'. change iny = {{x -{ ^x)"^ \- y^} — {x^ {y')

= (at + Aa:)2 - AT^

= 2,X^X + (A;i:)2.

change in /"
, .

-5 5 .
J. =1 2X + Ax.

change in x

.: Lt (e|2HI£4^) = Lt {2X + &X)
A* —> o\ change m x / ax —>.

= 2.r.

. . -f^ = 2X.
dx

We should obtain this result if we applied our ordinary rules

for a single variable to ^2 _l «,2

regarding y as constant, i.e. regarding x'^ -\-y^ as a function

of X only.

Similarly, ^ ^

A function of two variables has thus two first derivatives, one

with regard to each variable.

-i is an abbreviation for — fix, y).
dx dx-" •"
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A function of ti variables has n first derivatives. A special

notation is usually used for these several first derivatives.

Thus, if ^=y(^,^),

we write |/ instead of ^, and
ox ax

3/ d/
dy " dy

The derivatives are called partial derivatives. Thus -J. is
3:1;

called the first partial derivative oi f(x,y) with respeet to x, and

i-=^, the first partial derivative of/(jc, y) with respect to y.

Characteristic Equation.

It is found experimentally that there is a definite

relation between the pressure, volume, and tempera-

ture of a given mass (say i lb.) of any substance.

This relation takes its simplest form for a gas. It

is of the type

po = RU (I)

where p is pressure, v volume, temperature, and R'

is a constant for a particular gas, but is different for

different gases.

If we write R' = — , where m is the molecularm
weight of the gas in question, R is a constant for all

gases.

Its value depends on the units we use for p, v,

and e.

Formula (i) becomes

pv = -d, (2)

where p is the pressure per unit area, v the volume
per unit mass, 6 the absolute temperature, m the
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molecular weight of the gas, and R the gas constant.

The value of R is given in the following table:

—

Quantity.
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2. Find the " gas equation " for nitrogen in scientific units.

m for nitrogen is 28.

20

.-. pv = 2-97 X 10°^,

where p is in dynes per square centimetre, v in cubic centimetres

per gramme, and 6 in degrees C. absolute.

For steam, the characteristic equation is much more
complicated. Callendar's equation is

V = 85-65| - 0-4213(^7^7^' + o-o,6,

where V is in cubic feet per pound, 6 in degrees F.

absolute, and p in pounds per square foot. This

equation holds for dry or superheated steam.

To find the work done by a gas, expanding
slowly and isothermally.

By p. 151 the work done is

pdv,

where p stands for the pressure in pounds per square

foot and v for the volume in cubic feet. The work
done is then measured in foot-pound units.

For isothermal expansion, the characteristic equa-

tion gives

pv = R'0 = a constant, since 6 is constant.

.'. p = — •

.:
/
pdv = R'e ^ = R'eiogJ = R'0 \oger, (3)

where r is the ratio of expansion, i.e. —

.

^0
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The work done in expansion obviously depends on
the amount of gas expanding.

It is usual, in engineering, to take a standard

amount of gas, i lb. For other amounts, the work
done in expansion is proportional to the mass.

Equation (3) therefore becomes, _^?' air,

Work done, w = 53-4 6 loge{vi/va) per lb— (4)

For isothermal expansion, the work done is there-

fore proportional to the logarithm of the ratio of

expansion r {^= Vi/v^.

The; graph of w = 53 4 logr is the logarithmic

curve (fig. 2, p. 239). When r = i, ro = o, and when
r < I, zo is negative, i.e. the gas is being com-
pressed by an outside agency, and work is being done
on it, i.e. energy is being added to it.

EXAMPLE

Assume air at 200° F. expands slowly and isoihermallyfrom an
initial volume v^ to a final volume of i c. ft. at atmospheric pres-

sure. Let the ratia^fexpansion he 6. What is the initial pressure

of the air, and how much work is done in the expansion ? (
Take

13 c. ft. of air at atmospheric pressure and 60° F. as weighing
I lb.)

I c. ft. of air at 200° F.. and atmospheric pressure weighs

A^ X SJt = -0606 lb.
"I
by the gas

The initial pressure is given by/oXj = iXi. i equation.

,', pa =•= 6 atmospheres

= 88 Ib./square inch.

loge6 = 1 .7918.

.'. 'VJot)s., per lb. = 53-4 X 661 X i-^giS ft.-Ib.

.*. Actual work done = o-o6o6 X 53-4 X 661 X i'79i8 ft.-lb.

= 3833 ft.-lb.
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Intrinsic (or Internal) Energy.

It is well known that matter, especially of certain

kinds, possesses large amounts of stored energy,

which we can tap by suitable treatment.

One ounce of gunpowder, for instance, may give

out 3 or 4 foot-tons of energy if exploded by a spark.

This energy cannot come from the spark. The
energy required to produce the spark can be easily

measured electrically, and is quite trifling in com-
parison with the energy given out by the gunpowder.

The energy, which shows itself when the stimulus of

the spark is applied, must therefore have been stored

in the powder.

On the other hand, matter can be made to absorb

energy, as when water is heated.

These facts leads us to suspect that every portion

of matter has a definite amount of energy associated

with it. This energy may be called the Internal or

Intrinsic energy of the body or system of bodies. In

some cases we can add to or take from the store by
suitable processes, e.g. by sparking the gunpowder,

or by heating the water.

It is interesting to consider how this energy may
be stored in the body. We will consider a certain

volume of a gas. By the molecular theory, this

volume of gas consists of a multitude of molecules

confined within the walls of the containing vessel,

and all in a state of violent agitation.

Each of the molecules has a perceptible mass and
a velocity, and therefore each possesses both kinetic

energy and momentum.
Each, again, might attract the others as do the

stars and planets.

Again, each molecule may itself be a minute system
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of some kind, possessing an amount of energy proper

to itself.

It is evident that in a gas the intrinsic energy may
consist of:

(i) Kinetic energy of molecular motion.

(2) Strain energy due to the forces between the

molecules.

(3) Energy locked up in each molecule.

We may regard the intrinsic energy of a body as

the energy associated solely with the matter within

the boundary of the body. This capacity which the

body possesses for doing work must, as we shall see

later, arise from, and therefore be dependent upon,

its actual physical and chemical state.

A Cycle.

A series of physical or chemical changes which

a body may undergo is called a "cycle" if the final

"state" of the body is exactly the same as the initial

"state".

Joule's Equivalent.

It is common knowledge that heat can be produced

by expending mechanical energy. A piece of iron

gets hot when hammered on an anvil. Joule found

that to produce i B.Th.U. of heat, 772 ft. -lb. of

mechanical work must be supplied either from the

internal energy of the body or from external sources,

and this number is quite independent of the initial

state of the body, or of the manner in which the

mechanical energy is supplied.

The number now used, 778, is called Joule's

Mechanical Equivalent of Heat.
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Extension of Joule's Discovery.

After this discovery was made, it was soon recog-

nized tliat all forms of energy are "equivalent", each

pair of forms having an appropriate conversion factor.

For instance, in electrical engineering,

I Kelvin, or K.W.H. = 3412 B.Th.U.'s.

The forms of energy which have so far been recog-

nized are*:

—

1. Kinetic energy,

2. Potential ,,

3. Heat ,,

4. Strain

2

;3tram ,,

(i and 4 are also combined in sound.)

5. Light and radiant energy.

6. Electric energy.

7. Magnetic ,,

8. Chemical ,,

Conservation of Energy.

Then followed the principle that the total amount of

energy of all kinds in an isolated body or system of

bodies is constant, and that it is only transformation,

not creation nor destruction, that is possible.

By " isolated body or system of bodies " is meant a

system screened from all physical or chemical action

arising from bodies not in the system under con-

sideration. The system may be imagined to be

enclosed in an "adiabatic" shell, through which
forces cannot act nor energy penetrate (a, not;

^ja, through; ^alveiv, to go).

*Poynting: & Thomson's ffeat, p. 155.
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First Law of Thermodynamics.

Consider such an isolated system consisting of a

hot body H, a non-conducting cylinder C, a fric-

tion less piston P, a compressed spring S, and a gas

Adiabatic Coat,

Fig. I

A inside the cylinder. Suppose the piston is held

in position by a trigger.

Consider A as one body and the rest of the ap-

paratus as another body B.

Let the trigger be released and we will suppose

that the trifling amount of energy required to release

the trigger is included in the total energy of the

system at the moment of release.

When equilibrium is restored:

(i) The spring has compressed the gas and thereby

done work on it. Suppose this work is 5W, positive

when work is done on the body A.

(2) The hot body H has warmed the gas, and
therefore pumped heat energy into it. Suppose ^Q
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is the heat energy pumped into A, positive when

going into A.

A has clearly gained energy.

It can only have absorbed this energy by having

its internal energy increased. Let E be the excess of

the body's internal energy over its internal energy in

a chosen standard state. Let E increase by ^E.

.-. ^E = 5Q + p|^ (5)

where SE and SQ are measured in heat units and SW
in units of work. If we measure ^W in heat units,

putting 778 ft.-lb. = I B.Th.U., the factor t^f can be

omitted.

Equation (5) is a direct result of the principle of

the conservation of energy.

The internal energy ofa body depends on its physical

state. The truth of this statement can be seen by
considering the consequences of its denial. If it

were not true, then we could pump heat energy into

A, by heating it, without affecting its physical or

chemical state. This cannot be done with any

natural body. The addition or subtraction of energy

always affects in some way the physical or chemical

state of the body.

Once the numbers specifying the state of the body

are set', the internal energy is a unique and definite

amount, depending only on these numbers.

This experimental fact, namely, that the internal

energy is a function of the state of the body, is

known as the First Law of Thermodynamics.

If then E = ^ (x, y, 0, -m, &c.), where x, y, z, w,

&c., are numbers (co-ordinates) which define the state

of the body, and we denote the state of the body
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before the trigger is released by x^, y^, z^, Wi, &c., and,

after, by X2, y^, z^, w^, &c. , tlien

E2 - El = 0(^2, jVa, Zi, W2, . .) - ^{Xi,yi, Zi, ^1, • •)

= /\e

If the initial state be described briefly as " the state

A", and the final state as "the state B ", we may
conveniently write the latter integral in the form

/I(^0 + 778/

Now, suppose the body undergoes a cyclic change.

The total change in E must be zero, since by hy-

pothesis the initial and final states of the body are

identical.

(/) ('^Q + 778) = °' ^^^

where (I) means integration carried out for a cyclic

change.

We shall suppose that mechanical energy is

measured in heat units. We can then ignore 778
in the equations and put

Eb — Ea =
fl(dQ + dw), (7)

and E is a function of the numbers that define the

state of the body.

Since the internal energy is unchanged in any
cyclic process, any net work which the substance

going through the cycle—the "working" substance
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—may do can only be done at the expense of the

net heat received by the body from outside sources.

That is to say, the body acts merely as a vehicle of

energy, its own energy not being permanently al-

tered.

In fact, we have

(
f) {dQ + d\M) = o, by equation (6),

hence d)dQ = - ([)rfW,

i.e. the heat received by the body in the cycle = work
done by the body on the outside world during the

cycle.

(Notice the sign of (
I
) rfW. Work done on the body

in question is positive, so work done by the body

is negative.)

For this reason, it is not surprising to find that

the thermodynamic properties of cycles are in some
important respects independent of the nature of the

working substance, even though some materials are

good vehicles, in that they can convey large amounts

of energy per pound, while others are bad ones.

Sometimes the principle of the conservation of energy is reg'arded

as the First Law of Thermodynamics. The facts may be put as

follows :

—

I. In no natural process can energy be created or destroyed. If x
units of energy of kind A disappear (appear) then an exactly equiva-

lent amount of energy of some other kind appears (disappears).

Energy of every kind can therefore be expressed in any unit of

energy, say the foot-pound or the B.Th.U. or the Board of Trade unit

of electrical energy, and the total amoi;;it of energy in any isolated

system is constant. This principle leads to

SE = 8Q + 8W,

where E, Q, and W are measured in terms of the same u^it of energy.
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i!. The internal energy of a body depends on its state. It is im-

possible to add energy to a body or subtract energy from it without

affecting its state. This may be regarded as the First Law of

Thermodynamics.

It leads to the equations

E = a function of the state of body, (8)

and (ArfE

3. It will be seen later that the body possesses another property

—its entropy—which depends solely on its state, and which cannot be

altered without affecting its state. The Second Law of Thermo-
dynamics leads directly to this conclusion. If <p is the measure

of this property,

4) = a function of the state of the body (9)

Reversible Changes.

If a body A at temperature 6° F. is in contact with

a body B at the same temperature,

A
6°
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of heat energy will take place at an infinitesimal

rate.

An exchange of mechanical energy can take place

under similar conditions.

Let C (fig. 2) be a non-conducting cylinder, P a

frictionless piston. Let there be air, for instance, be-

hind the piston at pressure p lb. per square inch.

yc
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Adiabatic Expansion.

When a gas or vapour expands adiabaticaliy—i.e.

without receiving or giving up heat to other bodies

—

and reversibly, it does work and must give up part

of its internal energy in the process. Experiments

show that the expansion takes place in accordance

with an equation of the type:

pij"' = constant (10)

p, ("ratio of specific heats at

In air « = y = =r =\ constant pressure and
*

I.
at constant volume

= I -400 about.

Forinitially dry steam M = 1-135 about.

When we are dealing with gases, this equation,

pv" = a constant, enables us to express any one of

the three quantities, pressure (p), volume (v), and
temperature (6), in terms of the other two.

For example, if we wish to have the equation for

6 and v we note that

P'" _ R'-g- - R,

and pvv^-^ = /c by (10), where k is a constant.

0»"-i = constant (11)

Thermodynamics of a Gas.

The three quantities which completely define the

state of a given mass of a gas are its pressure, its

volume, and its temperature.

We have given reasons for thinking that the in-
(D102) 23
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ternal energy of a substance depends only on its

state. Hence for a gas

E is a function of v and 6,

since p is known when v and 6 are given, from the

equation ' ^ ^ ^,q^

Joule and Kelvin have shown experimentally that

if a given mass of gas is allowed to expand without

an exchange of heat or mechanical work, its tempera-

ture does not alter.

Consider a small communication of energy to the

given mass of gas.

We have by equation (5)

^E = ^Q + ^W, (12)

where ^Q is the heat energy put into the gas in

B.Th.U.'s;

^W, the mechanical energy put into the gas in

B.Th.U.'s;

and ^E, the increase in the internal energy of the

gas in B.Th.U.'s.

In Joule and Kelvin's experiment,

8Q = o, there being no exchange of heat;

^W = o, there being no exchange of me-

chanical energy;

therefore SE = o, by equation (12).

Now, in all bodies, E may be regarded as a func-

, tion of V and 6 only, so that we may write here

E = f(v, 6).

If 6 remains constant, as it did in the experiments
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of Joule and Kelvin, any increase of E depends on

the increase of w, and we have

^E = ^ Sv, approximately (p. 137).

Since SE is o in the experiments, and Sv is not o,

3 f
we must have ~ = o, for all values of v.

dv

•'• f{^> 0) cannot depend on v, for, if it did, it

would change with v and therefore have a derivative

r^, which would not be identically zero.

.'. E = /(O), a function of 6 only.

It is thus an experimental fact that, for a "per-

manent" gas, E depends only on the temperature.

The function f{d) can be determined as follows

:

Let a change take place at constant volume. Then
the gas does no mechanical work.

.-. (5E = 8Q.

But,5Q = C„Se,

where Co is the specific heat of the gas at constant

volume.
dE

/. oE = C/sou, or -5^ = Ci,.

C» is therefore a function of 9 only, and we have

E = jCvdO + constant.

By experiment it is found that C^ is practically con-

stant over a wide range of temperature, so that this

equation becomes

E = C„0 + constant (13)

This is the function of 9 required.
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Reverting now to a reversible change with ex-

pansion, in which the working substance does work

pSv, we get

5E = 5Q - p8v,

i.e. ^Q = C^e+pSv.

. ^Q _ c-se ,pSv
" T ~ "0 ^^'

But
I
= 1^, by (I).

= C,5(loge0) + R'^(l0g,Z.), (p. 243)

= ^{C, log,0 + R' log.t;}

= S<i>,

if we introduce a function ^ defined by the equation

^ = Cv \ogeO + R'loge?? + constant (14)

The function <i> thus defined is a function of Q and

V—i.e. of the state of the gas—and is just as definitely

a property of the gas in a given state as E is.

The function <^ is calculable, except for the addi-

tive constant, if 6 and v are given.

If we measure <j) from a definite selected state

of the body, so that ^ = o when v = v^ and
Q = 00, then

o = C„ loge^o + ^' loge^o + constant.

.•. constant = — C» logeS^ — R' logeV^,

and<^ = C,loge| + R'log.^ = V(». 0)-(i5)
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Since <^ = \/f(t), 6), <f,
must return to its original

value after going round any cycle, starting from the

state V, 6, and returning to the same state v, 9, i.e.

ij)d<l> = o.

But ^ = 50 (p. 340);

hence
(J)^

= o (16)

The function <l> is called the entropy of the gas, and
is reckoned per pound of the gas from ^ = o at

normal temperature and pressure.

It should also be carefully noted that all the changes

discussed so far are reversible ones, i.e. the tempera-

tures of the bodies exchanging heat are equal (T = 0),

and the driving and resisting mechanical forces are

balanced. (See p. 335.)

Practical Engine Cycles.

All engine cycles are irreversible both as regards

mechanical and thermal exchanges; otherwise the

cycle would be carried out indefinitely slowly. In

expansion of the working substance, for instance, the

friction of the piston must be overcome, and this is

an irreversible resistance. Also, the working sub-

stance is heated and cooled very rapidly, therefore

T > when heating up and T < when cooling,

by a considerable amount. The exchanges of heat

are therefore irreversible. Further, in the case of

gas- or oil-engines, the process which goes on in the

cylinder is not even a "cycle" as defined on p. 329;

for the working substance burns irreversibly in the
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process, and therefore its initial and, final "state"

cannot possibly be the same. The best we can do,

theoretically, is to construct a " cycle "—reversible

if possible—which resembles, as closely as may be,

the actual process that goes on in the cylinder or

engine.

The two most important internal combustion engine

cycles are the Otto and Diesel cycles, though these

cycles are not truly cycles in the strict thermodynamic

sense.

Otto Cycle.

1. A combustible mixture of gas and air is sucked

into a cylinder at approximately atmospheric pres-

sure.

2. It is compressed, approximately adiabatically, to

a small volume at a high pressure and a fairly high

temperature.

3. It is exploded and the pressure rises more or

less abruptly according to the speed of the explosion.

4. The high-pressure mixture (no longer the same,

chemically, as it was in stages i, 2, and 3) expands

approximately adiabatically, doing external work and

getting cooler in the process.

5. The burnt mixture at a low pressure and a fairly

low temperature is expelled from the cylinder into the

atmosphere.

In this cycle, we get one explosion per two revolu-

tions of the engine, and the engine is known as a

four-stroke engine, i.e. four strokes go to each cycle.

The programme is repeated in the next two revolu-

tions of the engine, and so on indefinitely. The
nearest ideal cycle to this one is as follows:

—

Start with a volume Wj of any permanent gas at
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pressure />i, and temperature 6^, in an ideal cylinder.

The suffixes refer to the states at the corresponding

points on the diagrams. Trace out the following

changes on the p, v diagram (fig. 3)

:

1. Heat the gas at constant volume by applying
hot bodies at progressively increasing temperatures

(reversible) from 61 to 62.. Its pressure will be in-

creased.

2. Expand the high-pressure gas adiabatically and
reversibly against a resisting pressure F = p (re-

F'g:- 3

versible). The gas does work, and therefore its tem-
perature drops to ^3. Let p^ and v^ be the pressure

and volume at the end of the expansion.

3. Cool the gas at constant volume ©3 from 63 to 6^,

by applying cold bodies of progressively decreasing

temperatures (reversible). The cooling is stopped at

the temperature 6^, which is such that the point 4 is

on the adiabatic curve through the point i.

4. Compress the gas adiabatically from p^, ©4, d^ to

A> ®i> ^1- This is possible since the point 4 was
taken on the adiabatic through the point i. The
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temperature rises, of course, during this compression,

as external work is done on the gas and heat does

not enter or leave it.

This cycle yields a definite amount of external

work which is absorbed in a mechanical form. The

/, V diagram shows a definite area which measures

this available work. Now, the efficiency of the cycle

is the ratio

number of units of work done
mechanical equivalent of heat taken in from hot bodies'

and it is very important to know what this fraction (ri)

is, as it measures the efficiency of the cycle as a

2

means of transforming heat energy into mechanical

energy.

The numerator we know from the/, v diagram and
the formula

W = il)pav. (Seep. 153.)
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We can calculate the denominator by using the

fact that
^

{j)di> = o,

where 96 is the entropy per pound of gas.

Trace the change in entropy as the gas goes
through the cycle beginning at state i. (See

fig- 4-)

Stage.
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Now, in fig. 3, the curved boundary lines of the

cycle are adiabatic lines, i.e.

01,7-1 = constant (p. 337).

••

I = ©'' = &"
where r = — = ratio of expansion,

and '=-©' («

This is the formula for the efficiency of the ideal

gas cycle which most nearly corresponds to the

actual Otto cycle. The nature of the gas does not

affect the result. It is the same for all gases which

obey the gas law pv = R'd.

Oil-engines—Diesel Cycle.

1. A charge of air is sucked into a cylinder at

approximately atmospheric pressure and temperature.

2. It is highly compressed, more or less adia-

batically, so that its temperature is sufficiently high

for oil to burn when squirted into it.

3. By means of a pump, oil is squirted into the

cylinder and burns. While burning proceeds, ex-

pansion is allowed to take place so that the pressure

does not rise, i.e. the heat energy of combustion,

except such as is used in the expansion referred to,

goes into the gas at constant pressure.

4. When combustion is complete, the burnt mix-

ture is allowed to expand more or less adiabatically,

thereby doing work and getting cooler.

5. When the piston gets to the end of its stroke, the

cylinder is connected to the atmosphere, and the con-
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tents of the cylinder, at a fairly low pressure and
temperature, are expelled from the cylinder into the

atmosphere during the ensuing stroke.

The ideal gas cycle nearest to this one is as

follows

:

Imagine a volume of gas, initially at pressure /i,
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Fig. 6

The changes of entropy are given in the following

table :—

stage.
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.•.ylog| = log|.

• f^y = ^

The efficiency of the cycle is given by

_ Cp(02 — 6j) — Ci,(03 — ^4)

349

1 =
Cp($2 — 61)
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This inequality is obviously equivalent to

(7—1) > (tp — P*)-

Now (7 — i) is the value of the right-hand expression when

p = I.

If, therefore, we put/(/)) for {yp —p^), then

(r- I) = AO-

Now, -x/(p) = 7(1 — P^~^), which is negative for all values
dp

ofp > I. Hence /(/I)) decreases as p increases from 1.

Hence, - Q- > . - (i)'"{^)}.

This result would suggest that a higher efficiency

is attainable with an Otto engine than with a Diesel.

But, in practice, a very much greater ratio of com-
pression can be used in the Diesel than in the Otto

engine, for the reason that in the Diesel engine

a non-explosive substance—pure air—is compressed.

In consequence of this the Diesel is somewhat more,

not less, efficient than the Otto engine. On the other

hand, its mechanical efficiency is less, so that, on the

whole, there is not a great deal of difference in the net

thermal efficiencies of these engines. It must always

be borne in mind that the theoretical cycles are merely

the best approximations to the actual "cycles", and
that these latter are limited by many practical con-

siderations which are ignored (because they do not

arise) in the theoretical treatment. As already re-

marked, the internal combustion engine "cycles" are

not true cycles (thermodynamically). The practical

considerations are, of course, of first importance, as

the cycles have to be actually carried out with
engineering materials and appliances. Though one
cycle be more efficient than another, theoretically, it
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by no means follows that the practical cycle corre-

sponding to it will be more efficient than the other.

It may be less efficient because of practical limita-

tions.

Thus far, we have considered gases and have made
some progress in discussing the thermodynamics of

gases, using only:

1

.

The characteristic equations of perfect gases.

2. The conservation of energy and first law of

thermodynamics.

3. The idea of entropy as the integral, along a

reversible path, of heat taken in to a body
divided by the temperature of the body.

When we proceed to deal with vapours we meet

a new difficulty. Vapours can pass from the gaseous

to the liquid, and even to the solid, phase and vice

versa. This new difficulty must be overcome by a

new principle. This new principle is The Second

Law of Thermodynamics.

Before considering the second law, it may be well to make the

foUowingf remarks :

—

1. Entropy is a measurable property of the body itself that we are

considering- as the working substance. It depends on the temperature

of the body and on its volume (see p. 340, equation 14).

2. On the other hand, the Second Law of Thermodynamics is a

theorem about the absorption of heat energy from and delivery of

heat energy to other bodies by the working substance. It involves the

temperatures of these other bodies. These temperatures we shall de-

note by T's, whereas the temperatures of the working substance

will be denoted by B's.

3. When heat exchanges are reversible, the temperature of the

working substance absorbing heat (say) is identical with that of the

body supplying the heat—i.e. if Ti is the temperature of the body
supplying the heat and 61 of the working substance,

Ti = 9i.

4. If the heat exchanges are irreversible, Ti is not equal to Sj.
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The Second Law of Thermodjmamics.

The second law of thermodynamics may be put

in this way.

It is impossible, by any cyclic operation on a

working substance, to transfer heat from a colder

to a hotter external body unless energy is absorbed

from, external sources.

This conclusion is drawn from experience and must
be accepted as an experimental fact. A further

corollary follows from this fact, namely,

With given limits of temperature, no cycle is

more efficient than a reversible cycle, no matter

what working substance is used.

To prove this corollary we may proceed as follows:

Let C and C be ideal cylinders (fig. 7), with fric-

tion less pistons P and P'. Let a hot body be

Removable non-conducting end^~~

-Adiabatic cylindei^-

O'

J
[Irreversible

Engine

Perfectly
conducting
end

Fig-. 7

available at Tj and a cold body at Tg. Let B and
A be volumes of any working substances (a gas, for

example, though the working substance need not
necessarily be a gas).

Assume it is possible, by means of the hot and
cold bodies, to cause A and B to go through a
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cycle which is reversible as regards B. How this

can be done practically will be seen later.

Let the cycle to which A is subjected be reversible

or not, as the case may be.

Let B, when working directly, absorb Qj heat units

from the hot body and reject Qa heat units to the

cold body. Then the amount of heat which dis-

appears is Qi — Q2, and this quantity, in heat units,

must be the equivalent of the mechanical work done

by the engine B, i.e. work is (Qi — Qa), and the

efficiency of B is
(
^'q ^'

)-

Let A, when working directly, absorb H^ heat units

from the hot body and reject Hg heat units to the cold

body. The work done is (Hj — Hj) and the efficiency

Now, let the engine A drive engine B backwards,

so that the net mechanical work done by A per cycle

must equal the net mechanical work done on B per

cycle. Since B is reversible, the result of reversing

the B cycle is that Q^ units of heat are rejected from the

working substance to the hot body, and the working
substance absorbs Q2 heat units from the cold body.

Now, Qi — Qa = Hi — Ha (= W, say) since the

mechanical work done bjy A is equal to that done
on B.

Also, if A has a higher efficiency than B,

Hi -Ha ^ Qi-Q> 'f
Hi Q

. W W
''

Hi
>

Qi-

.-. Hi < Qi,

and Ha < Qa (since Qi - Qa = Hi - Ha).
(D102) 24
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No mechanical energy from an external source is

supplied to this apparatus, yet it transfers (Qi — H^)

units of heat to the hot body, and absorbs (Q2 — Hg)

units of heat from the cold body, and each of these

qtiantities is positive, since

Qi > Hi and Q^ > H^.

Therefore tfie hot body is getting hotter and the cold

body colder, and during tlie process no energy is being

suppliedfrom an external source.

This is contrary to the Second Law of Thermo-
dynamics. Therefore the efficiency of A is not greater

than the efficiency of B, and j;a must be either equal

to or less than jjb, i.e.

The result obtained is quite independent of the work-

ing substance employed.

If A is reversible, then, by using B to drive A
backwards, we can show by the same reasoning as

before that if A is less efficient than B, heat will be

transferred from the cold body to the hot body without

any work being done on the system from outside. It

follows that A is not less efficient than B.

Therefore all reversible cycles working between
the same temperatures T^ and Tg have equal effi-

ciencies. This efficiency is the maximum efficiency

possible between the given temperature limits, and
is independent of the properties of the working sub-

stance.

To find what this efficiency is, it is only necessary
to study in detail the simplest case.
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Carnot's Cycle.

The simplest reversible cycle, using one upper tem-

perature and one lower temperature, is Carnot's. (The

theoretical Otto and Diesel cycles require a series

of hot and cold bodies at progressive temperatures.)

The simplest working substance is a gas.

Suppose a volume of gas is initially in the state

specified by pa, "Va, and Qa, where da, = T^, and is

contained in a

cylinder whose
sides are imper-

vious to heat,

and whose end is

a perfect conduc-

tor of heat. The
piston issupposed

to be impervious

to heat and to be

friction less (fig.

8).

I. Let the gas

expand isother-

mally at Qa from

A to B by apply-

ing the hot body
Tj to the end of

the cylinder, and
very gradually

reducing the balancing force F.

The gas must expand to prevent the temperature

from rising, and must therefore do mechanical work.

There is no change in the internal energy E, and

the mechanical work done by the gas is measured by

the area AB^a.

(_ Non-conducting
r ffictionless piston

Fig. 8



356 APPLIED CALCULUS

Therefore, by the conservation of energy, heat must

have been supplied.

Suppose Qi units of heat were supplied at Tj, the

temperature of the hot body.

2. Let the gas expand adiabatically from B to C,

by placing I, a heat insulator (fig. 8) against the back,

and very gradually reducing the balancing force F.

No heat is supplied.

The mechanical work of expansion done by the gas

is measured by the area BCc^. Hence the internal

energy must have dropped, i.e. the temperature must

have fallen. Suppose the expansion is such that the

temperature falls to Tg, the temperature of the cold

body.

3. Let the gas be compressed isothermally from

C to D by increasing the external force slowly, D
being on the adiabatic through A. The cold body

T2 is applied to the end of the cylinder during this

compression.

The work done on the gas is UCcd. There is no

change in internal energy, hence the gas must have

given out heat, say Q2 units at Tg.

4. Let the gas be compressed adiabatically, with I

(fig. 8) in contact with the end of the cylinder, from

D to A by increasing the external force gradually.

No heat exchange takes place, but mechanical work
is done on the gas equal to ADda. Its internal

energy must have increased, i.e. its temperature must
have risen. Since the adiabatic through D passes

through A, the gas will, after a certain amount of

adiabatic compression along DA, reach its initial con-

dition A, and we have a cycle of operations.

The d, (p diagram is simply a rectangle, the width

of which is R' logef^ ) and the height (Oa - 6d).
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The net (reversible) mechanical work done by the

gas is represented by the area ABCD.
The internal energy of the gas has not changed

because the gas has gone through a cycle, and hence

this work could only have been obtained at the ex-

pense of the heat energy of which the gas is the

vehicle. This heat energy is

(Qi - Qs) = area ABCD

(in consistent units), and this amount of heat has been

transformed into mechanical work.

The efficiency of the cycle is - ^„ ^^

We can calculate this quantity in the following way

:

All the heat exchanges are reversible, hence

Tj = Qa, the temperature of the gas along AB,
and T2 = Be ,, ,, „ CD.

The mechanical work done, A to B,

= R'Ti logeg) (p. 326).

Similarly, Q^ = R'T^ \oge(~\

But since AD and BC are portions of adiabatic

and Ti^ftT-i = Taws'*" S by equation (11).

. -Vb ^ "ih ^

. QlhQ? = RXTi - T,) log,r
•

Qi R'T,log,r '



358 APPLIED CALCULUS

Hence the efficiency (jj) is given by

n =
Ti

This is the fact to which the Second Law leads by

considering a Carnot cycle, namely, that no cycle

working between temperatures T^ (constant) and Tj

(constant) can have a greater efficiency than

Since Q^~Q^ = ^\~ \ it follows that 2* = ^
numerically.'

If we take heat entering the gas as positive, Qa 's

negative. Hence

\ -m =

-

i.e 2^ = o (19)

round the cycle.

In this result it should be carefully noted that T is

the absolute temperature of the external body to

which, or from which, heat passes. In a reversible

cycle this temperature is the same as the tempera-

ture of the working substance when heat is being

exchanged.

We have shown that the properties of the working
substance do not affect the efficiency of the cycle.

The efficiency depends simply on temperature—it is

the same for the same temperatures, whether one
or another substance is used as the working sub-
stance.
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What part, then, does the working substance play?

It must play some part, otherwise we could do with-

out it altogether. It plays the part of a carrier of

energy.

Carnot's theorem comes to this

:

If mechanical work is done by subjecting an

"energy-carrier" to a cycle of changes in which the

initial and final states are the same, and in which heat

is absorbed at one constant temperature from a hot

body, and rejected at a lower constant temperature

to a cold body, then the maximum efficiency of

energy conversion is

^^~^^
; and Z^ = o;

where Tj is the temperature of the hot body, Tg the

temperature of the cold body, and Q is heat entering

the energy-carrier.

This idea opens the road to the Thermodynamics of

Radiation.

In 1875 Bartoli pointed out that space containing

radiation is an energy-carrier, and therefore that such

space can be treated as the "working substance" of

a heat engine. The idea has been a most fruitful one

in the hands of Rayleigh, Jeans, Boltzmann, Wien,
and Planck, and is the starting point in the modern
theory of radiation.

Value of E^ for any Reversible Cycle.

The Second Law requires the efficiency of all re-

versible cycles, working between given limits of
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temperature, to be equal. Hence, for any reversible

cycle, using any working substance,

Qi ~ Q^ = efficiency of Carnot's cycle
Qi

and 2^ = o,

taking heat into the working substance as positive.

This result is true for any reversible simple cycle,

i.e. for a cycle using one upper temperature and one

lower temperature only.

Generalization of Carnot's Cycle.

Suppose a working substance undergoes any re-

versible cyclic change, such as AB (fig. 9).

Such a cycle can only be reversible if we suppose

we have at our disposal sources and sinks of heat at

every temperature between the maximum and mini-

mum temperatures of the working substance.*

We may then suppose that every exchange of

heat is between the working substance and a body

at the same temperature, i.e. T = 6 at every point

of the cycle.

We can draw over the diagram in fig. 9 a system

of isothermal and adiabatic lines, a few of which are

shown in the figure.

* Inasmuch as the conditions of reversibility are external conditions,

any series of chang-es of temperature, pressure, and volume in a body

can be imagined to be carried out reversibly by suitably adjusting the

external surroundings.

—Poynting and Thomson's Heat, Fifth Edition, p. 274.
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Any one of the strips, such as abed, is bounded
by isothermals and adiabatics, and hence the ele-

mentary cycle, abed, is a Carnot cycle, and if (^Q)i is

V

Fig. 9

the heat absorbed from the external body at Tj and
(JQ)2 is the heat passing from the working substance

to the external body at Tj, then

(<5Q)i
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But, if we take heat passing into the working sub-

stance as positive, ((5Q)2 must be written - («SQ)2,

and then

(iQ)i + (^2 = o.

A similar equation holds for the neighbouring

Carnot strip. Two neighbouring strips combined

are equivalent to a cycle represented by the boundary

line of the combined strip, because the common
boundary between the strips is traversed in one

direction when considered as belonging to one strip

and in the other direction for the other strip. In

the same way the cycle represented by the zigzag

boundary line of all the strips may be considered as

the sum of all the elementary Carnot cycles into

which the cycle is divided, and for these cycles we
have ^Q

2f = o,

where S stands for a summation for all the Carnot

cycles.

By making 5Q —> o, i.e. by making the width of

the elementary Carnot cycles —> o, we can make the

diagram of the compound Carnot cycle differ as little

as we please from that of the given cycle, and hence

for the given cycle

^^ _0^ o (20)

This result is the simplest mathematical statement

of the Second Law of Thermodynamics.

In any Reversible Cycle.

(/)f = (/)f (3.)
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Consequences of (1)-^ = for a Reversible Cycle.

Let A and B (fig. 10) represent two states of the

working substance, which can be reached by different

reversible paths I and II.

V
Fig. 10

Then AIBII is a reversible cycle, and

</)f
= o.

where the suffixes indicate integration along the

paths I and II respectively.

JaV e A JaV e Ai'

i.e. I —^ is the same for any reversible path along

which it may be integrated. Now, as there are in-

numerable reversible paths by which a substance in

state A can pass into state B, -^ can depend only

on these states, so that, provided the initial and final
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States A and B are the same, the integral has the same

definite value, whatever reversible path is actually

followed.

It follows that I -^ is a function of the numbers

which define the states A and B.

We may therefore write I —^ = /(A, B),

We can now show that the function / has a particu-

larly simple form. Take a standard state O. Then

j-dQ ^ f-dQ_^ j-dQ^

for a reversible path from O to B can be taken

through A.

H-/:f =/:f-/:f
= (a function of B) — (the same

function of A)

= 0B — <pA, say,

where (px = j -¥

Consequently,

0B-0A = JA-T"l= Lt'
where the suffix r denotes a reversible path of in-

tegration.

The function of state, </>, is called the entropy.

We are directly led to it by the Second Law of

Thermodynamics applied to reversible cycles.

It is here proved to exist^r any working' substance,

and to be a definite function of the state of the work-

ing substance. In fact, for steam, COj, SO2, &c.,
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tables of ^ exist, so that we can look up the value

of
<l>

for any one of these substances in any specified

state.

Definition of Entropy.

Since any series of changes of pressure, volume,

and temperature in a body can be imagined to be

carried out reversibly by suitably adjusting the ex-

ternal surroundings (p. 360), the increase in entropy

between state A and state B is I -^ taken along any

reversible path from state A to state B.

An Irreversible Cycle.

If I {-^j be taken along an irreversible path it

no longer necessarily measures (0b — ^a).

The efficiency of an irreversible cycle cannot be

greater than the efficiency of Carnot's cycle, assuming
that each cycle works between Tj and Tj. Carnot

proved this (p. 352).

•• V—q;—A < T, '

where the suffix i refers to an irreversible cycle.
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or, regarding heat put into the working substance

as positive,

o > s2i

for a simple cycle, and

(/)f < ° .(23)

for any cycle (cp. p. 362).

We use the "equals" sign for a reversible cycle

and the combined sign for an irreversible cycle.

An Irreversible Path.

If the states A and B are connected by a reversible

path r and an irreversible path i (fig. 11), we have

V

Fig. II

(/)f 7 o.

/:m-/:(f),<°-
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i:m.<im-

i.e.
I

-F^, for an irreversible change of state, cannot

be greater and may be less than the change in

entropy corresponding to the given change of state.

If the state B is indefinitely near to A, we can write

for an irreversible infinitesimal change of state.

An Adiabatic Reversible Change of State.

Suppose the working substance passes from state A
to state B reversibly and adiabatically, then, since the

path is reversible, by hypothesis, I -^ measures the

increase in entropy from state A to state B, if taken

along the actual path. But, along the actual path,

5Q is everywhere zero, because the change of. state

takes place adiabatically.

/: ="
i.e. there is no change of entropy.

An adiabatic reversible change of state is therefore

an isentropic change of state.

It should be carefully noted that nothing has been

said as to whether the change of state takes place by

expansion or compression.

The conclusion reached is therefore equally true

whether the change of state is brought about by

expansion or compression.
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An Irreversible Adiabatic Change of State.

Now, suppose the change of state from state A to

state B is irreuersible and adiabatic, then

/;

when taken along the actual path, because 8Q is every-

where zero, by hypothesis. But this integral does not

measure the change in entropy when taken along the

actual path, because the actual path is irreversible.

As proved on p. 367,

/;f < 03 - 0.

where the integral is taken along the actual path,

and this integral is zero just as / -^ is zero, along

the actualpath.
^

•'• 0B — 0A >. O,

i.e. there can be no decrease and may be an increase

of entropy.

An adiabatic irreversible change of state is therefore

not necessarily isentropic but may be. The entropy

cannot decrease—that is all we can say.

Just as in the previous paragraph, this conclusion

is equally true whether the change is brought about

by expansion or compression.

PRACTICAL EXAMPLES

I. Suppose a given volume of a perfect gas at p, v, 6
expands adiabatically into a vacuum so that its final state is

A> "i> and ^j. Then, it is an experimental fact (Joule and
Thomson's experiments, p. 338) that 6i is very nearly equal to 0.
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The expansion is clearly irreversible, and since 6 = ^1 it is iso-

thermal, and it is evident from the /, v and 6, 4> diagrams that

we can change from state A to state B by a reversible isother-

mal expansion in which the entropy increases.

In fact, the increase of entropy, per pound, is

J e J V V

.
v.

i.e. o -I- R' loge-1, which is positive.
V

2. When steam expands in a turbine, the expansion is irre-

versible and nearly adiabatic. The entropy of the steam, per

pound, when it leaves the turbine is greater than when it enters

it. This is an experimental fact.

3. When air is cbmpressed in an air compressor, the compres-

sion of the air is irreversible and nearly adiabatic. The entropy,

per pound, of the air when it leaves the compressor is greater

than when it enters the compressor. This, again, is an experi-

mental engineering fact.

We will now consider changes of state when no

mechanical work is done.

A Change of State brought about by a Reversible

Communication of Heat.

The heat added to the working substance is ^Q
say. It is added reversibly at 0, the temperature of

(50
the working substance, hence -^ is the increase of

entropy, i.e. for the complete change

where the integral is carried out with reference to

the actual heat exchange.

(D102) 25
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A Change of State brought about by an Irreversible

Communication of Heat.

We cannot now integrate along the actual heat

exchange to find the change of entropy.

The substance changes in the irreversible process

from state A {p^, v^, Q^) to state B (/>i, -v^, 6i), and to

f^dO
find the increase in entropy, we must integrate I -^

along any reversible path which will bring the sub-

stance from state A to state B.

This integral is not necessarily equal to I -~ for

the actual path as the increments of heat might be

different.

Changes in the Entropy of a System.

So far, we have confined ourselves to one body, the

working substance. But every other body of the

system may undergo changes of state, and has a

definite entropy which may or may not change.

Suppose two bodies a and b interact in any way,

so that the state of a changes from A to A' and of

b from B to B'.

1. Suppose it is merely an exchange of heat, then it may be

reversible or irreversible.

If it is reversible da, the temperature of a, equals 6h, the

temperature of b.

The gain of entropy of A, due to the passage of 5Q of heat

from A to B, is — -^, and the gain of entropy of B is + -^.
Va "&

As 9a, = 6b, the net gain of entropy is nil.

If the exchange of heat is irreversible, the gain in entropy by

one body may exceed the loss of entropy by the other, and,

consequently, the exchange of heat under irreversible conditions

between the bodies of the system may increase the total entropy
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of the system. As an instance, we will talie the irreversible

exchange of heat by conduction which takes place when i lb.

of water is heated from a temperature 6„ to di by means of a hot

body of very great mass at Tj = di.

The heat exchanged is c{6i — 9(,) heat units, where c is the

specific heat of water, viz. unity.

The hot body therefore loses (^i
— ^0) heat units at constant

temperature Ti.

Hence it loses entropy I —-~—''

) units by the equivalent

reversible change. '

On the other hand, the water gains entropy equal to

/: -9 = ^°H'

by the equivalent reversible change, and

01 — &a _ Oi — Og

since T, = Oi- But

^l^li." < loge^ (see below),

hence the gain of entropy by the water is greater than the loss

of entropy by the hot body, and the algebraic gain of entropy is

rio^^i _ ^1 ~ ^0
]

for the system consisting of the two bodies.

'-g- is greater than it would be

if 2, under the integral sign, were replaced by its least value -^.

(See p. 72.) Hence we conclude that

by an irreversible exchange of heat we may increase the total

entropy of the system consisting of the body being heated and

the body heating it.

2. Suppose the exchange is one of mechanical energy without

exchange of heat, i.e. it is an adiabatic change. Then one of

the bodies expands doing work on the other which contracts. In

either case, by p. 368, the entropy of each body must either

remain unchanged or increase.
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We have seen that in the two examples considered,

viz. an exchange of heat without mechanical work
being done and an exchange of mechanical work
without heat exchange, the entropy of the system
cannot decrease. It may increase if the changes are

irreversible; otherwise it is unaltered. These con-
clusions have been found to hold good for all cases

which have been examined in detail by physicists

and chemists, and have led to a principle of physics.
This principle, which is generally accepted, is as
follows:

—

In all natural changes of state which may take place
in the bodies of an isolated finite system, the total

entropy of the system never decreases and generally
increases.

Suppose that the entropy of a system of bodies is

a maximum. This means that any hypothetical

slight change of state in the system diminishes the

entropy ; but we have just seen that, in natural spon-
taneous changes, the entropy can never diminish.

Hence the hypothetical slight change cannot occur.

The system is therefore in stable equilibrium.

The tendency of a natural system of bodies is

therefore always towards a state of greater en-

tropy.

The Principle of Maximum, Entropy, as it is

called, is the starting point of much of the work on
the applications of thermodynamics to chemistry.

The Steam-engine Cycle.

We shall suppose the engine to be a "condensing"
engine, i.e. one in which the steam, after passing
through the engine, is condensed and returned to the
boiler. The working substance—sometimes steam.
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sometimes water—goes through the following cycle

of operations. After leaving the condenser, the water

is pumped by the boiler-feed pump into the boiler.

It is there heated and turned into steam. It then

passes through the engine and enters the condenser.

It is there condensed by means of cold water,

which removes the latent heat of the low-pressure

steam.

In the boiler furnace, the heat is generated by com-
bustion at a very high temperature, say 2000° F.,

whereas the highest temperature attained by the

steam is comparatively small, say 800° F., even when
a "superheater" is used. The transference of heat

from the "hot body"—the furnace gases—to the

working substance is therefore irreversible. The
lowest temperature of the working substance depends

upon the vacuum in the condenser. If the condenser

pressure is i in. Hg. say, the temperature is about
80° F., the saturation temperature at that pressure.

The lowest temperature of the cooling water— the

"cold" body—is about 15° F. lower than the lowest

temperature of the working substance, hence the

passage of heat from the working substance to the

cold body is irreversible. The external work is also

done by the working substance irreversibly. The
actual cycle is therefore essentially an irreversible

one. We can, however, imagine a reversible cycle

which would correspond to the actual cycle, if all the

exchanges of heat and mechanical energy could be

carried out reversibly. This ideal reversible cycle

was proposed by Rankine and is named after him.

It is a compound Carnot cycle.

Before describing this cycle we must deal with a

point of difference between the steam cycle and any
cycle we have hitherto considered.
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all in the Same StateWorking Substance not

Simultaneously.

The working substance is not all in the same state

at any given moment; for instance, the steam in the

boiler is in a very different state from the water in the

condenser. We must therefore consider an element

ot the working substance of mass Sm, and follow its

history as- it passes round the cycle outlined above.

Rankine's Cycle.

The steam when it leaves the boiler may be wet,

dry, or, if the boiler is fitted with a superheater,

superheated, i.e. at a temperature higher than the

saturation temperature corresponding to the boiler

pressure. These three possibilities lead to three dif-

ferent sets of equations, but for simplicity we shall

take the single case when the steam is initially dry

when it leaves the boiler. The principles upon

which the calculations are based are exactly the same
whether there is initial wetness or initial superheat

or neither. Suppose fig. 12 is a. p, v diagram repre-

senting the state of a given mass, i lb. say, at dif-

ferent points of the ideal cycle.

K
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The point A represents the state of the substance

in the boiler before its latent heat is imparted to it.

We shall denote this state by/i, o), 61.

The point B represents the state after evaporation

(A. "!< Oi).

The point C represents the state after reversible

adiabatic expansion in the engine {p2, ^2, O^)-

The point D represents the state after condensa-

tion to water in the condenser {p2> »> 02)'

We can now suppose that the mass, i lb., goes

through this cyclic change of state in a cylinder, i.e.

in a "one-organ " engine.

The actual engine has several organs, namely,

boiler, condenser, &c; indeed, the idea of using

several organs and keeping one organ for one pur-

pose was Watt's great contribution to the practical

development of the steam - engine. In the ideal

theory, it makes no difference in principle whether

we suppose the engine to have one or several organs,

but the calculation is easier to follow if we suppose

the cyclic change to take place in a cylinder.

The steps in the cycle are as follows:

1. The water (at state D) is heated up from 62 to 6^,

the pressure on the piston being increased so as to

correspond to the saturation pressure of the steam

at each temperature.

2. Reversible evaporation under constant pressure

pi by a hot body at temperature 61.

3. Reversible adiabatic expansion from pressure /^
to pressure p2) with consequent cooling from 61 to 62,

and some condensation.

4. Reversible complete condensation under con-

stant pressure p2 by a cold body at temperature 62-
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The figure ABCD (fig. 12) is the indicator diagram

for this cycle, and represents the work done per pound

per cycle.

The work done by the element Sm is then

Sm X area ABCD x /,

where / is a scale factor.

The area ABCD can be obtained by integration,

but it is much easier to obtain it from the theorem

that {\)d(j> = o. Steps 2, 3, and 4 above are re-

versible. A reversible step corresponding to step i

is obtained if we suppose the feed-water heating is

done by means of a series of progressively hot ex-

ternal bodies, each of which is at the temperature

of the water it is heating. The increase of entropy

along this path is then \-^, where the integral is

taken from the state corresponding to D to that corre-

sponding to A (fig. 12).

But 8Q = 80 for water and T = as the step

is reversible,

. ("^dQ f^'dd , Oi
••

i. T = i,T = '^S%-

We get, then, for the increases of entropy in the

different steps:

I- + log.gi.

2. + Li/01.'

3. None.

4. - XzLzlOi,

where Xg is the dryness fraction of the steam at

state C, hence

^" =
lr + "'4: (»3)
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The entropy diagram is shown in fig. 13.

377

Equation (23) gives us x^ as all the other quantities

are known, i.e.

-^ = rXfe + ^°4] ^^4>

The heat taken in, per pound, by the working
substance is

m - 6^) + Li] B.Th.U.

The heat given up to the condenser is x-^L.^

B.Th.U., per pound, i.e.

'It, + ^°^4:] ^•'^^•^•'

per pound, on substituting the value of X2 given in

equation (24).

Hence the efficiency {>]) of the cycle is given by

no, - e,) + L, - 0.(ioge| + ^)-
^ L (a _ a\ . T„ _

(6), - e,) + L, •(25)
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The work done, per pound (W), by the working

substance is the numerator of this fraction, i.e.

W = [(01 - e,) + U- ea(loge| +
^J]

B.Th.U.

Suppose M is the "water-rate" of the engine, i.e.

the number of pounds of steam flowing past the boiler

stop valve ^er second. Then a mass M goes through

the cycle per second. Now, a mass Sm in going
through the cycle does work, WSm B.Th.U., there-

fore a mass M does (MW) B.Th.U. of external work,

i.e. (MW) B.Th.U. of work are done per second, i.e.

the H.P. developed = ^^ >< 778 "

550
= 1-415 MW,

where W is the net external work, measured in

B.Th.U.'s, done by a pound of steam in going through

the cycle. The p, v and B, <p diagrams, plotted for

I lb., are therefore all we need to work out the effici-

ency and horse-power of the ideal Rankine cycle.

This cycle is the one with which the actual per-

formances of steam-engines are compared. When
the so-called "efficiency" of a steam-engine is given

as 60 per cent say, it has 60 per cent of the efficiency

of the Rankine cycle, the upper and lower tempera-

tures of which are the same as those of the working

substance in the actual engine.

Practical Calculation of the Rankine Cycle.

The steam engineer is constantly using the thermal

values and efficiencies of Rankine cycles.

To simplify calculations, he uses a diagram of the

properties of steam, plotted in terms of the "total

heat" I, and the entropy ^.
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This diagram is called the "Mollier" diagram for

steam.

The "total heat" I is defined thus:

I = E + Kpv, (26)

where E is the internal energy per pound, p the pres-

sure, V the volume, and A is the constant 0-001285,

If the steam expands adiabatically from state B to

state C, we have ^Q = ^E + Kp&v, by p. 332, equa-

tion (5) for any element, and from equation (26)

^I = ^(E + Kpv)

= m-V S{Apv)

= SE + ASipv)

= ^E + A[pSv + vSp], since

A{pv) = ip + A/>) (v + Av) — pv; hence

81 ^ SE + ApSv + AvSp

= 0-1- Av8p,

by the equation 8Q = SE -\- ApSv, since 8Q = o.

,-. Ib - lo = A\ vdp.

Now, I vdp = area KBCL (fig. 12),
' c

hence the area ABCD (fig. 12) is given by

area ABCD = ^^^^" - (A -AV
.'. the area ABCD in heat units is given by

(Ib - Ic) - A(A - /aV.
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In all but the most refined calculations, A{pi — pi)a,

is negligible compared to Ib — Ic, hence the required

area in heat units is simply the difference in the total

heats at states B and C. This quantity is called the
'

' heat drop " between B and C. Tables of heat

drops, for different initial and final conditions of

temperature and pressure, have been calculated from

Callendar's equation for steam (p. 326), by H. Moss
{Heat Drop Tables, Arnold).

Exercise 16

1. Calculate the ideal efficiency of an Otto gas-engine,

the compression ratio of which is 8.

2. Calculate the ideal efficiency of a Diesel cycle for

which the compression ratio is 12, and p = 3.

3. Calculate the ideal efficiency of a Rankine cycle for

a steam-engine working at 200 lb. per square inch abs.

pressure, dry steam, and a condenser pressure of i in. Hg.

4. A pound of ice at 0° C. is put into a bucket of water

at 10° C. The thermal capacity of the bucket and the

water in it is equal to 20 lb. of water. Calculate the

change in the entropy of the system due to the irreversible

conversion of the ice into water. Take the pound calorie

as the heat unit. The latent heat of liquefaction of ice

is 80 C.H.U.

5. A system consists of a non-conducting cylinder, two

gases, and a conducting piston between them. The sur-

faces of the piston in contact with the gases are non-con-

ducting. The piston is a tight fit, so that the gas A,

initially at a high pressure, expands very slowly against

the gas B at the lower pressure. Show that the entropy

of the system when equiUbrium is reached must be greater

than in the initial state of the system.

6. Show that the theoretical work, in foot-pounds,

which must be done by an air-pump to take in, com-
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press adiabatically, and expel i c. ft. of air against a

pressure p^ lb. per square inch, the initial pressure of air

being ^2 !''• P^'' square inch, is

^^^i^AW^-^P2'

where pv^ = a constant is the equation of the adiabatic

change of state.

7. Show that when the difference in pressure
( p^ — p.^

in question 6 is small, the H.P. required, ideally, to com-

press V c. ft. per minute of air at pressure /j 's

0-00435 V8/2.

8. Show that, if the initial pressure in question 6 is

atmospheric, the H.P. formula becomes

"°H(sy"- 4^'

where V is the volume of atmospheric air dealt with in

cubic feet per minute (n = i'4o8).

9. A gas-engine works on an ideal cycle, with adiabatic

compression and expansion, receiving and rejecting heat

at constant volume. The piston displacement per stroke

is I c. ft., the clearance volume 0-2 c. ft., and at the

beginning of compression the temperature of the cylinder

contents is 600° F. absolute, the pressure being atmo-

spheric. The engine receives o-oS c. ft. of gas per cycle

(calorific value 600 B.Th.U. per cubic foot). Atmospheric

pressure = 14-7 lb. per square inch. Find

—

(i) Weight of cylinder contents,

(ii) Pressure and temperature at end of compression

(7 = 1.38).

(iii) Rise of temperature during explosion (neglect

jacket loss and take C^ = o-iS).

(iv) Pressure at end of explosion.

(v) Temperature and pressure at end of expansion.
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(vi) Efficiency of the cycle.

(vii) Efficiency of an engine working on a Carnot cycle

between the same highest and lowest tempera-

tures. (Mech. Sc. Tripos, 1906.)

10. The diagram is the indicator diagram taken on one
side of the piston of a double-acting steam-engine. There
was iV lb. steam present during expansion. Find, with

Fig. 14

the help of steam tables, its dryness fraction at the

points A and B, also the change in internal energy and ex-

ternal work done between these points. Hence deduce the

exchange of heat that must take place between the steam

and the cylinder walls during the expansion from A to B.

The pressure and volume corresponding to the point A
are 65 lb. per square inch absolute and 0-5 c. ft.

II. A boiler evaporates 30,000 lb. of water per hour at

a coal consumption of 7 lb. of steam per pound of coal.

The coal, in burning, uses i7"5 lb. of atmospheric air, per

pound of coal. The products of combustion enter an

electrically-driven chimney fan at 300'' F. and i in. water-

gauge of induced draught. The fan has an efficiency of

60 per cent. Calculate the output from the electric motor.
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12. A torpedo air-chamber contains initially 80 lb. of

air at a pressure of 1700 lb. per square inch absolute

and 15° C, and at the end of the run the pressure is

500 lb. per square inch and the temperature 2° C. How
much of the heat of the air which is left in the chamber

has been abstracted from the sea? {Mech. Sc. Tripos, igi i.)





MISCELLANEOUS EXERCISES

I. Find the indefinite integrals of

; ^Kfilogx; (x^ — ^x + 2)-i;
x(x — i)^

and prove that

/
J

dx IT

5 + 4 COS;<: 3

{Ini. B.Sc. Hons. Land. igo4.)

2. Find the following integrals

:

C dx f li — Xr f
2x^ — Jtr + lo ,

ji^qri=-x: JVr+^'^''= j {x^ + ^) (x - 2^-

(B.Sc. Pass, Lond. igoj.)

3. Differentiate with regard to x the function

Site tan
n/(i -x^)

Effect the simplification of this function which the form

of your answer suggests.

Of what function is (i — x^)-* the second derived

function? {B.Sc. Eng. Lond. igo6.)

4. Find the following indefinite integrals :

/—^, r', ie'sinxdx; [sfie'dx.
x\x - i) ] 1

(B.Sc. Eng. Lond. igo^.)

(D102) 386 26
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5. Find the value of -j- at any point x, y of the curve

and write down the equation to the tangent to the curve

at the point.

If the tangent cut the axes Ox, Oy in P and Q respec-

tively, show that op + OQ is constant and equal to a.

Take a equal to 4 in., and draw a number of straight

lines cutting the axes and having the sum of their in-

tercepts equal to this.

Show that the curve may then be sketched in to touch

these lines. [Qual. Exam. Mech. Sc. Trip. igo8.)

6. Show by integration by parts that if I„ denotes the

integral r/s

j ^ swf'xdx,
Jo

where B = arc tan-, we have
a

I _ "("- i) t

n' + a'

{B.Sc. Pass, Land, igoj.)

7. Prove that if m and n be positive integers,

[2 sin™^ cos'^xdx = ^ ~ '
[2 sin'"-*jt; cos^'xdx,

Jo 'Jo
and evaluate

/ 2 cos^* sin'xdx and I
^ cos"^ sin^xdx.

Jo Jo

(B.Sc. Eng. Land. 190^.)

8. What properties of /(x) may you infer from the

graph of /'(x)? Amongst all right cones which have the

same volumes, show that that one which has the least

curved surface may be constructed from a circular sector

whose angle contains 3-6 radians approximately.

{B.Sc. Eng. Lond. jgo6.)
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9. Prove that

("jx -a)(x-b)[x-i{a+ V)^dx = ^"
'^^^ •

Apply Simpson's Rule to calculate an approximate value

of logfiio from the formula

logcio =
I
—

.

/l X
{B.Sc. Eng. Lond. igo6.)

10. Integrate the functions

JC^ + 2JC — I I 1

x\x — i)^ ' >^x{x — 2) a^ s\a^x + b^ cos^^'

Show that, if c > « > o,

I ^^^-^ ^ dx = ir(c — \/c^ — «^)/2C.

{Maths. Trip. I. igoS.)

11. Show that, when/(^) is of the form A + Bjc + Cx"^^

f'/{x)dx = ^{/(o) + 4/(i)+/(i)}.
Jo

Show also that, if <^(:v) be any polynomial of the fifth

degree,

C<t>(x)dx = xV{5-^W + 8</.(i) + sHP)},

(Maths. Trip. I. igog.)

where a and ^ are the roots of ^^ — jc + J^ = o.

12. Find the differential coefficient (derivative) of

(i) log.tan^; (u) -^-t—-X -\- I

\iy = a.a;/(j; + V) prove that

2 dy _ d^y jdy _ 2

jV d!ji; dx^l dx x

[Qual. Exam. Mech. Sc. Trip, igio.)
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13. The co-ordinates of any point on a cycloid are given

by the formulae

X = a{e + sinfl),

jf = a(i — cos5).

Prove that <t>, the inclination of the tangent to the axis

of X, is equal to ^6, and that the length of the arc

measured from the origin is given by j = 4a sin<^.

Prove also that the radius of curvature at any point is

twice the intercept on the normal between the curve and

the line y = 2a. (B.Sc. Pass, Land, igii.)

14. Evaluate the integral

/:

where a, /3, and 7 are real constants, and ^ is not equal

to 7.

Prove that

/"<» dx I

/:o(2«2 _ Ar2)S 3a4"

{Int. B.Sc. Hons. Land, igrj.)

15. Apply the method of integration by parts to evaluate

llogexdx, ixlogexdx, txe^dx.

Show that

/:

X loge(i + ix)dx = f (i - 2 log4),

and prove in any way that this is less than

C^x^dx.
Jo

(Maths. Trip. I. 191j.)

16. Show how to find maximum and minimum values of

a function of one variable.
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Sketch the form of the curve y = —; —
„, and deter-

1 + X -\- x^

mine the maximum and minimum values of jj/.

(Qual. Exam. Mech. Sc. Trip. 1914.)

17. State shortly rules for finding the maximum and

minimum values of a function of x, and give reasons for

the rules.

In the theory of transformers, the foUowring expression

for cos^ occurs.
. _ (i — 0-) sina^

•^"^^ ""
{2(1 +0-2) - 2(1 - 0-2) COS26'}i'

where o- < i
;
prove that when cos^ is a maximum

cos 20 = = COSl|t.

I + o-

(B.Sc. Eng. Glasgow, 1917-)

18. Evaluate the integrals

J sm:x; ; sm-'jc

prove the reduction formulae,

n(Sn+l — Sn) = s'lnznx, Vn+l — Wn = Sn+l,

and show that if Vn is taken between the limits o and ^tt,

its value is ^mr, when n is an integer.

(Maths. Trip. I. 1914.)

19. Sketch the curve 2y^ = x(i — x)^, and find the

volume of the solid obtained by rotating the loop about the

axis of X. (Qual. Exam. Mech. Sc. Trip. 1919.)

20. Investigate carefully the conditions that f(a) should

be a minimum value of the function /(jc).

The total work done in a compound air compressor is

given by the equation
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where p, the pressure, is the variable ; show that the work

done is a minimum when p = >/p\p2-

{B.Sc. Eng. Glasgow, 1915.)

21. A spherical raindrop, whose radius is 0-04 in.,

begins to fall from a height of 6400 ft. , and during the fall

its radius grows by precipitation of moisture at the rate of

io~* in. per second. Prove that, if its motion is unre-

sisted, its radius on reaching the ground will be o* 04205 . . .

in., and that it will have taken about 20 '5 sec. to fall.

{Int. B.Sc. Hons. Land. 1904.)

22. Trace the portion of the curve;)/ = 8 — ;ic^ for which

both X and y are positive. Without further calculation

draw the tangent which is equally inclined to the axes.

Measure the intercepts made by the tangent on the axes.

Find the equation of the tangent at the point whose co-

ordinates are a, b. Calculate to two significant figures the

values of a, b, for which the tangent is equally inclined to

the axes, and the values of the intercepts it makes upon

the axes.

Compare these values of the intercepts with those found

from your drawing.

Find by integration the area enclosed by the curve and

the axes, and check your result by counting squares.

[Army Entrance, Higher Maths. ipiS-)

23. The displacement of the piston of an engine from

the mid position is given by

y = r cosW ^(i — C0S2W),
4/

where w is the angular velocity of the crank,

r the crank radius,

and / the length of the connecting rod.

If M is the mass of the, piston, find the maximum inertia

force arising from it.

24. In the last example, state the percentage of the

maximum inertia force which arises from the obliquity of
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the connecting rod. Why is the effect of obliquity so

much greater in disturbing the inertia force of the piston

than it is in affecting its velocity?

25. A fly-wheel, of weight i ton and radius of gyration

3 ft. 6 in., is rotating once every second. What is its

kinetic energy, and how long will it take to come to rest

under a frictional torque round the axis of 40 lb. -ft.?

{Qual. Exam. Mech. Sc. Trip, igig.)

26. The angular displacement of a pendulum is given by

e = e^e-^t Slant.

Show that the successive maxima of d form a series in

geometrical progression.

If the time of a complete oscillation is i sec, and if the

ratio of the first and the fifth angular displacements on the

same side is 4:1, show that the time taken in swinging

out from the position of equilibrium to an extreme dis-

placement is o- 241 sec. [Maths. Trip. 1. 1917.)

27. Prove that the most economical section of copper

to employ in a transmission line is such that the interest

on the capital invested in the copper is equal to the cost

of the energy consumed in resistance, no other costs being

supposed to influence the choice.

If the cost of copper is ;^ioo per ton, the interest on the

capital invested 6 per cent, the cost of electrical energy

0'75 pence per kilowatt hour, the density of copper

9 gm./cm.^, the specific resistance of copper 1-6 x 10"^

ohm-cm. units, calculate the most economical section of

conductors to carry 500 amperes to an outlying station

for 12 hr. per day throughout the year.

{Mech. Sc. Trip, igis.)

28. A smooth hemispherical bowl of radius a contains a

rod of n times its weight, and is suspended from a point

on its rim. Show that, if in the position of equilibrium

the rod lies entirely within the bowl, it must be horizontal.

Prove also that the inclination of the plane of the rim to

the horizontal is tan"i2(w -f- i)-
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[The centroid of a hemispherical bowl bisects the radius

to its vertex.] {B.Sc. Pass, Land. 1914.)

29. A motor-car of mass fn is driven by a constant force

at all speeds, the resistance varying as the square of the

velocity. Prove that the time taken to get up a velocity

V from rest is

2P '°Hv,-vr

where Wq is the full speed and P is the power required to

maintain this speed against the resistance.

A loaded car of 15 h.p. weighs 2000 lb., and its full

speed is 45 m.p.h.; prove, on the hypothesis stated above,

that it can attain a speed of 30 m.p.h., starting from rest,

in a little under half a minute.

[It may be assumed that ^ = 32 in foot-second units

and that log«io = 2'303.]

{Inter. B.Sc. Hons. Lond. 191j.)

30. Show how a ballistic galvanometer may be used to

measure flux, and how the constant in such a case may be

determined.

A ballistic galvanometer was connected in series with

the secondary of an electromagnetic flux standard and a

current of 2 amperes was reversed in the primary of the

standard.

The first fling observed in the galvanometer scale was

65 divisions, and the tenth swing on the same side

12 divisions.

The details of the flux standard were

:

Turns in primary coil 500, length 40 cm., diameter

8 cm.

Turns in secondary coil 500, diameter 7-5 cm.

Find the change of flux per scale division.

If the resistance of the secondary circuit were halved,

what would be the observed fling, assuming no damping

effect due to friction? (Mech. Sc. Trip. igi2.)
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31. By considering the air enclosed in a cylinder fitted

with a piston, prove that the work done by the air in ex-

panding from a volume v^ to a volume Wg 's

/:
pdv, where p is the pressure per unit area.

If a quantity of air expands in such a manner that no

heat is lost or gained, then p x v" remains constant, where

c = I '41. Prove that the work done when the initial

pressure and volume are pj^ and v^ and the final pressure

and volume are p2 and Wj is

Find p2 and the work done if v^ = 10 c. in., Wj = 20

c. in., and /j = 15 lb. per square inch.

(Army Entrance Exam. igiS.)

32. Show that in an atmosphere of uniform temperature

the pressure, p, at a height above the ground, is given

by the equation ^ ^ Ae"''^

where /* = &S and p„ and
pf.

are the density and pressure
A

of the air at z = o.

A hollow gas-tight sphere containing hydrogen requires

a force mg' to prevent it from rising when the lowest point

touches the ground ; the total mass of sphere and hydro-

gen is M. Show that the sphere can float in equilibrium

with its lowest point at a height h above the ground,

"^^^'^
^ I, M+m

(Maths. Trip. I. 1915.)

33. If a drop of water is confined in a vessel, show that

the increase in vapour pressure due to surface tension,

in the state of equilibrium, is given by

8^ = ^^ I,
cr — pa
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where Sp is the increase in pressure, cr the density of

water and p of its vapour, T the surface tension, and

a the radius of the drop.

Show that the corresponding' change in vapour density

arising from the electrification of the drop is given by

— ' P ^^

Rdtr - p Sttka*'

where e is the electric charge, k the dielectric constanti

R the gas constant, and 6 the temperature.

What bearing has this result on the size of raindrops

we may expect to accompany thunderstorms?

Assume the potential energy of a sphere carrying a

. . e^ ~\

charge e is given by

34. Show that the efficiency of the theoretical Diesel

cycle is equal to

If py-i \

r^-Ayip - i)/'

where y is the ratio of the specific heats and r and p the

ratios of the maximum volume and cut-off volume respec-

tively to the clearance volume.

Taking y = i'4, find the value of this efficiency for an

engine in which r = 14 and p = i'6. Find also the

efficiency of the standard engine of comparison for the

same compression ratio. [Meek. Sc. Trip. 1914.)

35. Show how to find the dryness fraction at any point

in the adiabatic expansion of a liquid and its vapour, the

condition of the mixture being known at one point of the

expansion. The specific heat may be assumed constant.

If the dryness fraction remains constant during adia-

batic expansion, show that the relation between the latent

heat and the temperature must be of the form

T = ae -T,

where « is a constant and o- is the specific heat of the liquid.
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[L is the latent heat, T the temperature, and q the dry-

ness fraction,] (Mech. Sc. Trip, igij.)

36. In the case of a perfect gas evaluate the definite

integral j-=- between any two states defined by v^, i^

and T/j, 4> where dii. is the heat received per pound of the

gas at absolute temperature T, irreversible processes being

excluded.

Also, if the relation between pressure and volume is

given by the equation /«" = constant, show that the

total heat received is proportional to Tj — Tj, and find

the complete expression for it.

[Mech. Sc. Trip, igog.)

37. Show by thermodynamical reasoning that if L is the

latent heat of vaporization at absolute temperature T of

a substance, p the pressure, V the specific volume of the

saturated vapour, and la that of the liquid, then

(V - h)) ^ L/9T\

J T\dp)v

—
j

is the rate of increase of temperature with

pressure, the volume being kept constant.

38. It is known that the discharge of electrons by hot

platinum in a vacuum follows the law

i = DTie'^,

where t is the saturation thermionic current per square

centimetre of platinum surface, T the absolute tempera-

ture of the platinum, P the work which must be done
in enabling as many electrons to escape from the metal
as there are molecules in i gm. molecule of platinum, and
D is a constant.

Show that if the emission of the negative electrons be

assumed to be analogous to the evaporation of a liquid.
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the result of example 37 leads directly to the experi-

mental law. (H. A. Wilson.)

39. Show thermodynamically that the electromotive force

of a reversible electric cell is given by

e = x + t(|).

where E is the electromotive force, A, the heat evolved

or absorbed by the chemical changes accompanying the

passage of unit quantity of electricity through the cell,

and T is the absolute temperature.

40. Show on thermodynamic grounds that the surface

energy of a liquid is not equal to S, the surface tension,

but to S — T—=. in r TT T , \

8T [B.Sc. Hons. Land. 1^14.)

The Thermo-electric Circuit.

Consider a circuit formed of a copper and an iron wire soldered

together into a ring.

It is well known that if one junction is heated, a current of

electricity will flow in the circuit. This current is called a
" thermo-electric " current.

The work done in carrying the electric charges round the

circuit is provided by the excess of the heat absorbed by the

circuit over that liberated by it.

The absorption and liberation of heat takes place in two

"^^'ons:
(a) At the junctions.

(5) In the metals.

Peltier (1834) discovered effect (a). The Peltier law is that the

absorption (or liberation) of heat is proportional to the quantity

of electricity that has passed the junction. The constant of

proportionality (the Peltier coefficient) depends on the tempera-

ture of the junction and the sign of the heat absorption, on the

direction of the flow of electricity at the junction, i.e.

Heat liberated per second in passing from B
to A at temperature Tj = IIjj.

Heat absorbed per second in passing from A
to B at temperature Tj = —Vi^.
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Kelvin worked out the second effect. He supposed electricity

to possess a specific heat a, different for different metals, so

that, if o-A is the specific heat of electricity in metal A, the heat

absorbed in moving a quantity of electricity (e) from a point at

temperature T to one at temperature (T + i) is at^e.

Both the Peltier and Thomson Effects are Reversible.

By considering the passage of a quantity of electricity e round

the thermo-electric circuit, and applying the thermodynamic laws

to the reversible interchanges of work and heat, we can arrive at

the relationship of n and a to the temperature and electromotive

force of the circuit.

41. Show by thermodynamical reasoning that on Kelvin's

hypothesis of "the specific heat of electricity" the Peltier

^E
effect P at a thermojunction is equal to T—-, and the

oT
difference of the specific heats of electricity in the two

metals of the circuit is — T -~r, where T is the absolute
dv''

temperature and E the electromotive force of the circuit.

(B.Sc. Hons. Land. igi4.)

42. A volume of an ionized gas loses its ions by diffusion

and by recombination.

If the effect of diffusion is negligible in a particular

experiment, and if there are, initially, as many positive as

negative ions, show, by the principle of mass action, that

J--J- =. et,

where Wj is the initial number of ions,

«2 the final number of ions,

i the lapse of time,

and 9 a constant.

This constant is called the coefficient of recombination,

and it has been experimentally determined. It is nearly
constant for air, oxygen, hydrogen, and carbon dioxide.

43. There is a method of determining the number of
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molecules which take part in a chemical reaction, which

depends on measuring the velocity of the reaction at

widely different concentrations.

The formation of cyamelide from cyanic acid takes place

according to the equation

«CNOH = C„N„0„H„.

An experiment showed the following results

:

The concentration of the cyanic acid changed from

188-84 to i53'46 in 23 hr., the volume being v. It

changed from 79 '01 to 76-04 in 20 hr., the volume
being V.

Show that , , . ,. .

_ °^-(l).-Mg)v
logeC„ — logeCv

and hence deduce that the reaction is a trimolecular one.

44. Deduce the differential equation of mass action for

a trimolecular reaction in the form

g = k{A-x){B-x)(C-x),

where A, B, and C are constants and x is the concentra-

tion of one of the reacting substances. Interpret these

constants, and show that the integral of the equation is

~ 4C-A)\A-B '°^'A(B^ + C-B '°^'B(C-;«r)/-

45. If A = B = C, the solution in example 44 breaks

down. Show that then

_ x{2k — x)
" "

2A'''(A - xfi

Experiments were made on the reaction between ferrous

chloride, hydrochloric acid, and potassium chlorate at 20°C.

The quantity x of ferrous chloride used up was measured

by titration with permanganate solution.
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The hydrochloric acid was decinormal, and the ferrous

chloride and potassium chlorate of corresponding strength,

so that A = B = C = o-i.

The quantitative reaction is

6 FeClj + KClOj + 6 HCl = 6 FeClg + KCl + 3 H^O.

The reaction proceeded as follows

:

Time in Minutes. tox.

O O'OOO

5 0-048

15 0'122

35 0-238

60 0-329

no 0-452

170 0-525

Show that the reaction is trimolecular and k is nearly

unity.

How do you reconcile this result with the chemical

equation stated above?

46. Consider the formation of ethyl-acetate from ethyl-

alcohol and acetic acid at 25° C.

C3HP2 + C2H5OH = C.HgOa + H^O.
(acetic acid) + (alcohol) = (ethyl-acetate) + (water).

Initially the concentrations were, in Knoblauch's experi-

ment: /-. _ ,
'-'acid — 1

)

Cwater ^ Calcohol ^= 12- 75"'

During the initial stages of the reaction

t-^ethyi-acetate _ 0-00303 mols per litre per minute.

Find the reaction constant (kj), assuming it is a di-

molecular reaction.

47. The reaction in example 46 is reversible, and can

be studied by starting with a mixture of ethyl-acetate and

water, and measuring the rate of formation of acid.
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In Knoblauch's test, he started with

Cethyl-acetate ^^ Ij

Calcohol = Cwater ^ 12 "2 15*

The experiment gave

AĈ"^ = 0-000996 mols per minute.

Calculate the reaction constant (kj).

48. The reaction in example 46 was allowed to go on

until equilibrium was established, and no further increase

in ethyl-acetate took place. It was then found that

Cethyl-acetate = 0-7144 mols.

Calculate the final concentrations of the acid, water,

and alcohol.

Show that

Cethyl-acetate X Crater __ « ^ o .

Oacid X Caioohol

Check this result with the experimental data of (47).

49. Experiments were made on the conversion of dibrom-

succinic acid, in aqueous solution,

C^H.O.Brg = C.HgO.Br + HBr,

a monomolecular reaction.

The reaction constant was measured at different tem-

peratures with the following results:

T° C. K (Time being- in Minutes).

15 0-00000967

40 0-0000863

80 0-0046

loi 0-0318

Show that these results are consistent with a formula

'o&io" = a + bT.

What conclusions do you draw as to the general effects

of temperature in promoting chemical reactions?
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50. Cane-sugar, when treated with acidulated water,

changes into two sugars of the same composition, but

of different optical properties. Cane-sugar rotates a

beam of polarized light in the right-handed direction;

the "inverted" sugars are, on the whole, laevo-rotatory.

The reaction is expressed by the chemical equation,

C12H22O11 -I- HgO = CgHigOg -I- CgHjgO,.,
(cane-sugar) + (water) = (dextrose) + (laevalose)

and its progress can be followed with the polarimeter.

The reaction is monomolecular, as the water is greatly

in excess, and the concentration of it is nearly constant.

In one set of experiments, the reaction constants were

« at 25° C, 0-765 mol per minute.

K at 55*^ C, 35 '5 mols per minute.

Show that the time taken for the concentration of the

cane-sugar to fall to ^jj of its initial value is 3 '01 min.

at 25° C. and 0-0648 min. at 55° C.

Note.—Examples 43-50 inclusive are based on data given in

Van 't Hoff 's Lectures on Theoretical and Physical Chemistry (Arnold,

1898).

The Examination Papers of the University of London are published

regularly by, and may be obtained from, the University of London
Press, Ltd., 18 Warwick Sqiiare, London, E.C.4.

(D102) 27





BIOGRAPHICAL NOTES
(See Portraits)

Napier, John (1550-1617), was born at Merchiston

—

now a part of Edinburgh.

He lived through the years of the Reformation, and took

a prominent part as a zealous protestant in the religious

and political discussions of his day. He wrote a com-
mentary on the Book of Revelation with propositions and

mathematical demonstrations, in which proposition 21,

for example, is a proof that the Pope is Anti-Christ, and

proposition 36 shows that the apocalyptical "locusts"

are the Turks and Mohammedans.
There was a craze in his day for enormously long

numerical calculations. One contemporary, for instance,

practically devoted his life to finding a numerical approxi-

mation to the value of it, and finally obtained it correct

to 35 places of decimals—in fact, the character Sir Walter
Scott gives to David Ramsay in the Fortunes of Nigel

is exactly that of a typical sixteenth century mathe-

matician.

Napier was impressed by the enormous labour of these

calculations, and set about trying to find a means for

simplifying them. The result was his invention of

logarithms, which seems all the more marvellous when
one bears in mind that Napier had no index notation

to help him. The index notation was invented years

afterwards by Descartes.

Napier thought of the relative motion of two points

connected with one another in the following way: as

one point moved in a straight line with uniform velocity.
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the second point moved in another straight line with

an accelerated velocity, so that as one point moved in

a series of steps in arithmetical progression, the other

point would move in a series of steps in geometrical

progression. He put these ideas into numbers and

developed his system of logarithms.

Kepler, Johann (i 571 -1630), a German astronomer,

was born near Stuttgart.

His main contribution to astronomy is the group of

three laws known as Kepler's Laws. He analyzed an

enormous mass of astronomical observations, and dis-

covered empirically the three laws in accordance with

which the planets revolve round the sun. Newton showed
that his law of gravitation was the only one consistent

with Kepler's Laws.

Ill-luck dogged him all his life. He first succeeded

Tycho Brahe as astronomer to Rudolph II, Emperor of

the Holy Roman Empire, but this empire proved bankrupt

and could not pay him his wages. Then his wife lost her

reason and died ; his second marriage was also unfortunate;

and, finally, he was deprived of an appointment he held

for heresy, and narrowly escaped with his life.

He cast horoscopes and told fortunes, for which he

charged heavily ; but his conscience seems to have pricked

him for imposing on the credulity of his age, for he wrote:
" Nature, which has conferred upon every animal the means
of existence, has designed astrology as an adjunct and
ally to astronomy ".

Out of it all, however, he gave the world the laws

of planetary motion and the idea of the integral calculus.

Descartes, Rend (1596-1650), a French mathematician

and philosopher, and a contemporary of Galileo, was born

near Tours.

As a lad he suffered from ill-health. " On account
of his delicate health he was permitted to lie in bed
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till late in the morning's ; this was a custom which he

always followed, and when he visited Pascal in 1647 he

told him that the only way to do good work in mathematics

and to preserve his health, was never to allow anyone

to make him g'et up in the morning before he felt inclined

to do so; an opinion which I chronicle for the benefit

of any schoolboy into whose hands this work may fall."^

He became a soldier by profession, and he is said to

have thought of the method of co-ordinate geometry

—

Cartesian Geometry, as it is now named after him—in

three dreams which he dreamt while campaigning on

the Danube.

He does not appear to have been a particularly amiable

man. His appearance was forbidding", and his personality

seems to have been even more forbidding than his ap-

pearance. He despised learning and art, except for their

utility.

He is celebrated in mathematics for his invention of

co-ordinate geometry, and in philosophy for his dictum,
" Cogito, ergo sum"; a dictum which called forth from

Carlyle the comment: ^^ Cogito, ergo sum. Alas, poor

Cogitator, this takes us but a little way. Sure enough, I

am; and lately was not : but Whence? How? Where to?

The answer lies around, written in all colours and motions,

uttered in all tones of jubilee and wail, in thousand-

figured, thousand-voiced, harmonious Nature."

Sir Isaac Newton {1642-1727), the English mathe-
matician and natural philosopher, was born near Grantham
in Lincolnshire on Christmas Day.

His father was a yeoman farmer, and it was intended

that Isaac should carry on the farm. At the age of

fourteen he showed distinct mechanical ability, qnd his

widowed mother decided -to give him a chance to develop

his mechanical instincts. He was sent to Trinity College,

Cambridge, and went through the ordinary college course

1 Ball's History of Mathematics.
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in classics and mathematics. He accidentally came across

a book on astrology which interested him, but he could

not understand it on account of the geometry and trigo-

nometry in it. So he bought a copy of Euclid, and was

surprised to find how plain it all seemed.

On account of the great plague, he left Cambridge

in 1665-6 and went to live at his home in Grantham.

It was during this visit that his ideas on gravitation took

definite shape. He also invented the differential calculus

about this time.

In i66g he was appointed Lucasian professor in Cam-
bridge, and gave much of his time to the study of optics.

His writings were attacked by many of his contemporaries

with,an arrogant confidence born of ignorance, and Newton
had an uphill task from 1672 to 1675, and more than once

determined to give up philosophy except for his own
satisfaction. " I see I have made myself a slave to

philosophy; but if I get rid of Mr. Linus's business, I

will resolutely bid adieu to it eternally, excepting what

I do for my private satisfaction, or leave to come out

after me; for I see a man must either resolve to put out

nothing new, or to become a slave to defend it."

Of Newton's absent-mindedness many stories have been

told. A typical one narrates how, when he was enter-

taining some friends to dinner and went to draw some
wine, he stayed away so long that his friends set off to

seek him. They found him in the wine cellar, busy

solving a mathematical problem, his friends forgotten,

and the jug still unfilled.

He was no "eight hours' day" man, and would often

spend eighteen or nineteen hours out of the twenty-

four at the most exhausting kind of work.

Newton had the strongest sense of duty. When he was
appointed Master of the Mint, he stoutly refused to engage
in any of his favourite scientific pursuits, as he felt that

his whole energies should be given to the service of

the State. He broke away from this rule once, for
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Leibnitz apparently was too much for his patience. The
German mathematician had been working at a set of

problems and was unable to solve them. He thereupon

concluded they were insoluble, and published them as a

challenge to the world. Newton received the problems

one evening on his return from the mint, and at the end

of five hours had solved them all.

He spent nearly half his time studying chemistry and

theology. Once when Halley made some flippant remark

on a question of religion, Newton fell upon him with the

rebuke: " I have studied these things: you have not!
"

His greatest contributions to physical science were his

theory of gravitation, by which he accounted for the

motions of the bodies of the solar system, and of the

moons around the planets ; and the differential calculus.

He made many other important, though minor, contri-

butions to mathematics and physics. Here is Newton's

own estimate of himself:

"I do not know what I may appear to the world

;

but to myself I seem to have been only like a boy, playing

on the sea shore, and diverting myself, in now and then

finding a smoother pebble, or a prettier shell than ordinary,

while the great ocean of truth lay all undiscovered before

Leibnitz, Gottfried Wilhelm (1646-1716), one of the

most brilliant men of his time, was born at Leipzig. He
was educated first at Leipzig University, which refused

him the degree of Doctor of Laws, on account of his youth.

He thereupon removed to Nuremberg, where he continued

the study of the law and subsequently entered the diplo-

matic service.

In 1674 Leibnitz became • attached to the Court of

Brunswick, and from that time he had greater leisure

to devote to his favourite pursuits of mathematics and

philosophy. He propounded his views on the differential

and integral calculus between 1674 and 1677, and an



4o8 APPLIED CALCULUS

acrimonious debate ensued among contemporary mathe-

maticians as to who was really the inventor of the

differential calculus, Newton or Leibnitz. The dispute

seems to have been largely a matter of words. Newton

appears to have discovered for himself the view of the

differential calculus as "a rate of growth", and he

expressed a rate of growth or a fluxion, as he called it,

by putting a dot over the letter, just as is done in

dynamics at the present day. The dot is satisfactory

enough when "time" is the independent variable, and

when the rate of growth is a speed, but it is not very

convenient when other independent variables are used.

Newton used a method akin to the modern method of

limits to arrive at these fluxions. Leibnitz, on the other

hand, invented the dyjdx notation, which is used to-day.

This notation is not altogether free from objection. It

suggests first of all that the quantity represented by dyjdx

is a fraction equal to dy divided by dx, and secondly, the

first thing the beginner wants to do is to cancel the d's.

However, Leibnitz's notation appears to be now standard-

ized, except in dynamics, where the Newtonian notation

with dots is still commonly used—and convenient. Leib-

nitz's reputation rests as much on his philosophical as on

his mathematical work. He was the propounder of a

system of philosophy known as Monadology. It is curious

that the practical experimenter, Newton, developed the

calculus on more philosophical lines than Leibnitz, whereas

the philosopher, Leibnitz, gave the world the practical

notation which is used to-day.

Volta, Alessandro (1745-1827), an Italian physicist,

is chiefly celebrated as a pioneer in electrical science.

He was born at Como. The practical unit of electrical

pressure—the volt—is named after him.

Faraday, Michael (1791-1867), an English physicist

and chemist, was born at Newington, Surrey, of York-
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shire stock, and was the son of a blacksmith. He was
apprenticed to a bookbinder, and educated himself.

He was " discovered" by Sir Humphry Davy, who made
him a laboratory assistant at the Royal Institution, and
took him on a tour through France, Italy, and Switzerland.

He occupied diflferent posts at the Royal Institution, and

finally became professor of chemistry there.

He was an experimenter of the highest skill, and pos-

sessed great powers of physical reasoning. Sir J. J.

Thomson says: "Faraday, who possessed, I believe,

almost unrivalled mathematical insight, had had no training

in analysis, so that the convenience of the idea of action

at a distance for purposes of calculation had no chance of

mitigating the repugnance he felt to the idea of forces

acting far away from their base and with no physical con-

nection with their origin". His reputation rests chiefly on

his electrical discoveries. He would have nothing to do

with " action at a distance ", and insisted on the " axiom "

that matter cannot act except where it is. This led him

to picture space as filled with a medium—ether—and to

ascribe the electric and magnetic field to states of stress

and strain in this medium. He pictured the medium as

filled with "tubes of electric and magnetic force", and

proved that the phenomena of electromagnetic induction—

•

which he had discovered—could be accounted for as an

effect produced by a change in the number of " Faraday

Tubes " passing between the two circuits concerned. The
same theory accounted for the induction of currents in

closed circuits by magnets in motion relative to them.

Carnot, Sadi Nicolas Leonard (1796-1832), was a

French army officer and a contemporary of Fourier.

He was the son of an eminent geometrician. In 1824

he published a paper " Reflexions sur la puissance motrice

du feu ", which laid the foundations of modern thermo-

dynamics. Though his paper is based on what is now
considered a wrong notion, namely, that heat is a material
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substance, only a slight modification Is needed to bring his

work into line with modern views on this point. His

methods are simple, and yet most original and profound,

and they form the basis of all later work on the relations

between heat and mechanical energy.

Henry, Joseph (1797-1878), an American physicist,

was born in Albany, N.Y. He made several practical

electrical inventions, and carried out important experiments

on electrical induction. The practical unit of electromag-

netic induction—the Henry—is named after him.

Graham, Thomas (1805-69), a Scottish chemist, was
born in Glasgow. He was the son of a merchant, and

was educated at Glasgow University. He gave special

study to the subject of molecular physics, and made im-

portant contributions to our knowledge of the diffusion of

gases and of the properties of colloids. The subject of

colloids is becoming important because of its industrial

applications.

Joule, James Prescott (1818-89), ^n English physicist,

was born at Manchester.

His chief scientific work consisted in the proof of

the relation between mechanical energy and heat. He
demonstrated that if mechanical energy disappears in a

system of bodies and no other physical change takes place

except a change in the temperatures of the different bodies

of the system, then for every 778 (roughly) foot-pounds of

mechanical energy that disappear, i B.Th.U. of heat

makes its appearance. Thus heat and mechanical work
are interchangeable forms of physical energy.

Clausius, Rudolf Julius Emmanuel (1822-88), a
German physicist, was one of the pioneers of the science

of thermodynamics. He was a contemporary of Lord
Kelvin, and these two physicists covered much the same
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ground in thermodynamics by different methods. Clausius

also did very important work in the kinetic theory of gases

and in the theory of electrolysis.

Kelvin, Lord (Sir William Thomson) (1824-1907), was
born in Belfast. His father was Professor James Thomson,
an Irishman, and his mother, Margaret Gardiner, the

daughter of a Glasgow merchant. The family settled in

Glasgow in 1832, and William Thomson was educated at

Glasgow University and later at Peterhouse, Cambridge.

Lord Kelvin's main scientific work consisted in the

contributions he made to the theory of the conservation of

energy. He lived in an age of great mechanical develop-

ments. Watt's steam-engine had been invented before he

was born, but the theory underlying its action was only

beginning to be understood about 1840. Electrical de-

velopments were taking place rapidly, and these industrial

applications of electric power depended, in their scientific

aspects, mainly upon the principle ofconservation of energy.

He applied himself to thermodynamics, and did more

perhaps than any other man to place the theory on its

present basis. He also laid the foundations for the exact

measurement of electrical quantities, and so brought the

science of electricity and magnetism within the range of

exact treatment. In the realm of theoretical physics,

Lord Kelvin made important contributions to the theories

of hydrodynamics and elasticity. He also constructed a

hydrodynamical theory of the constitution of matter, based

on vortex atoms in an infinite fluid. In collaboration

with Professor Tait of Edinburgh he wrote a Treatise on

Natural Philosophy, which entirely changed the standpoint

from which the subject was viewed in this country. He
took part in the laying of the first submarine cable to

America, and acted as adviser in many engineering and

industrial enterprises.

Clerk Maxwell, James (1831-79), a Scottish mathe-

matician and physicist, was born in Edinburgh. He was
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educated at Edinburgh Academy, Edinburgh University,

and Cambridge. He was Professor of Natural Philosophy

in Aberdeen from 1856 to i860, and subsequently became

Cavendish Professor of Physics at Cambridge.

Working on Faraday's physical ideas of the electro-

magnetic field, he investigated them mathematically with

the highest skill, and showed that an electromagnetic

theory of light could also be based on the Faraday-Max-

well equations. These equations are still the "last word"

in electrical theory, and are the starting point of the

modern theory of relativity, which centres round Einstein's

name.

He was a man of great intellectual power. P. G. Tait

writes in the EncyclopcBdia Britannica: "In private life

Clerk Maxwell was one of the most lovable of men, a

sincere and unostentatious Christian. Though perfectly

free from any trace of envy or ill-will, he yet showed on fit

occasion his contempt for that pseudo-science which seeks

for the applause of the ignorant by professing to reduce

the whole system of the universe to a fortuitous sequence

of uncaused events."

Guldberg, Cato Maximilian (1836-1902), a Norwegian

mathematician and physicist, was born at Christiania. He
was the eldest son of Carl August Guldberg, a clergyman.

He was educated in the Royal Norwegian University at

Christiania, and subsequently studied in France, Switzer-

land, and Germany. In 1869 he was appointed Professor

of Applied Mathematics in the Royal University, a position

which he held until his death. He devoted himself from

his student days to the study of chemical dynamics. At
the age of twenty-eight he contributed a paper (in associa-

tion with Professor Waage), on the Law of Mass Action,

to the Society of Science in Christiania. This was followed

by a second paper in 1867 entitled: " fitudes sur les

affinit^s chimiques ", and by a third paper in 1879, in

which the theory of Mass Action was given in its final
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form. He contributed many papers to learned societies

on Physical Chemistry. He was a keen hunter and fisher-

man, and was for a long time President of the Norwegian
Hunting and Fishing Society.

Gibbs, Josiah Willard (1839- 1903), an American

mathematical physicist, was born in New Haven, Connec-

ticut, U.S. He was educated at Yale, and later became
professor of mathematical physics there. He studied

specially the applications of thermodynamics to chemistry,

and has been called " the founder of chemical energetics".

He wrote important papers on Vector Analysis. His

name is especially associated with a theorem in physical

chemistry known as the "Phase Rule".

Van 't Hoff, Jacobus-Hendrikus (1852-191 1), a Dutch
chemist, was born at Rotterdam. He was the founder,

with Le Bel, of Stereochemistry, or the chemistry of space,

in which the formula of the substance is represented not

in one plane, as the usual graphical formulae are, but in

the solid; for instance, CH^ is represented by a carbon atom
at the centroid of a tetrahedron with a hydrogen atom at

each corner. He also did a great deal of work on chemical

dynamics and the law of Mass Action.

The reader who is interested in the history of mathe-

matics and its devotees, should read A Short Account of

the History of Mathematics by W. W. Rouse Ball.
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TABLE I

LIST OF INDEFINITE INTEGRALS

f ,
^""*^

1ix^dx = —;— , unless » = — i.

/ « + i'

U = logex, or \ose{-x). 3. jel^dx = eF.

I
siaxdx = — cosa;. 5. I cos;*;^ = sin^;.

12

13

14,

IS

17

18

lsec';c<fjc = tana:. 7. / ., „ r = arc sin-.

f dx I . X
I

= - arc tan

—

] a"^ -V x^ a a

J x' — a' 2a X + a

= — loge" 7
^

>
'f ^^ < 'i^^-

2a a + X

j\/{a^ — x^)dx = \x^J{a^ — x?) -\- \a^ arc sin-.

fV(^+ k)dx = ^x^[x? + k) + \k \oge{x + y/x^ + k).

I e"* cos6;k dx = -= -Ja cosbx + b sinSjc).
i (V -\- 0'

|e"* sinbxdx = -3 r^(fl smbx — 5 cos6:x:).
J a^ + V

l—— = logetanijc. i6. j

—

~ = logfetanl— H— ).

J sinji;
<=> ^ J cos^ \4 2/

lsIn^.«r^:K = lj(i — cos2x)dx = Jjc — ^ sin2jt:.

Icos'^.r^Ji: = I J(i + cos2a:)^:«; = ^jc + ^^ sin2j[r.

These are all standard integrals which are constantly occurring' in

the applications of the calculus. The first ten at least should be com-
mitted to memory.
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TABLE II

NATURAL LOGARITHMS

X

1 . I

1.2

1-3

1-4

1-5
1.6

1-7
1.8

1-9
2.0
2. I

2-2

2-3
2.4
2-5
2.6

2.7
2.8

2.9
3-0
3-1

3.2

3-3

10.5
II.

"-5
12.0

12.5
13.0

13-5
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TABLE III

EXPONENTIAL FUNCTIONS

X



ANSWERS TO EXERCISES

AND HINTS FOR SOLUTIONS OF THE
MORE DIFFICULT PROBLEMS

Page 12

(i) A straight line passing througli the points (o, 3), (— f , o).

(ii) A circle of radius 2 units, (iii) The curve lies entirely on the

right-hand side of Y'OY, and is syrhmetrical about OX. It

passes through the origin and is called a parabola.

Page 25

I. 8. 2. 219. 3. I + 4a. 4. I.

Page 41

I. 0-9696 c. in.; 432-1 c. in. per inch. 2. 602.

Exercise 1

I. The lower limit Ai is 16-50 sq. in. The upper limit Aj is

21-50 sq. in. The difference is 30-3 per cent of A,. 2. A^ is

18-15 ^l- '"•> ^2 is 20-65 sq. in. The difference is 13-8 per cent

of Aj. The true area is 19-635 sq. in.

Ax
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Exercise 4

I. fl'. 2. slna. 3. J. 4. 0-7540; o-gogi; I-8736.

5. 19° 6'; 171° S3'; 315° 8'. 6. If arc tanx = 0, then

^'"'^ ^^"^ = -^. Now apply equation (12), p. 106. 9. The

error occurs in the fourth line. We divide by {x — a) to get

(.r+ a) = fl and (x — a) is zero if ;ir = «.

Exercise 5

I. Because acceleration is rate of change of velocity with time,

while velocity itself is rate of change of distance or displacement

with time, i.e. velocity is distance per second, and acceleration

is velocity per second, i.e. (distance per second) per second.

The accelerations are the same, for i mile per hour per second

is 3j\yg mile per second per second, and i mile per second

per hour is jf^xs mile per second per second. 2. 205 sec.

;

1-95 miles; 34-39 m.p.h. 3. At 25 m.p.h. Pv = mfv, hence

H P = I po X 2240 X 1-25 X 88 X 25 X 88-] ^
SSoL 32-2 X 60 X 60 J

4. F = —7=1 ^ x^dx = ^wP. 5. I = I p2irrdrr^ (j> being

the surface density) = 2irpl r^dr = where M = trt^p.

6. Divide the plate into sti-ips parallel to the axis, and integrate.

7. 74 Ib.-in.^. 8. 224 Ib.-in.''. In the second case a large part

of the total mass is between 5 and 6 in. from the axis, and hence

contributes heavily to the moment of inertia, which depends

on the square of the distance of the mass from the axis.

9. 447 lb.-in.2; 36-8 Ib.-in.2. 10. The matter should be as far

as possible from the axis about which the moment of inertia is

to be taken. Yes. II. 85 % of the mass is more than 2' 9"

from the axis and less than 3' o" from the axis. Hence the

moment of inertia of this part of the mass is less than 0-85 X 3^

= 7-65 ton-ft.^ and is more than 0-85 X 2-75^ = 6-43 ton-ft.^.

The remaining mass contributes moment of inertia less than

0-15 X 2-752 = I -16 ton-ft.^ and more than zero. Hence
max. I is 8-81 ton-ft.^ and min. I is 6-43 ton-ft.^; mean I is

7-62 ton-ft. The error in this figure cannot exceed 15-6 %.

12. 8-44 ton-ft. 2. 13. 38-82 X lo^^ ton-mile^. 14. E — irP.
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Exercise 6

I. jxi. 2. 2x^ + 2:r + I. 3. 2X + a + b.

4. I + 3^^ + 4^ + 6^. B. - nx—K 6. ^A^.

7.
'"^"'"'

8. .

^
- 9. 2m(2ax + x^)'«-^{a + x).

10. —3£—r— " sec'';!;. 12. sear tanjr. (Rule 7.)
(i + x^)i

13. — cosecj: cot-r. (Rule 7.) 14. — cosec^. 15. 3 0033^:.

16. cos3.r cos2j;+2 coss:r. 17. — sirtr cos (cos:r). (Put ^= cos.r.)

,3 j+asiux+bcosx_
(^^,g y ,g_ ^ ^^^^ _ ^ ^j^^

{b + cosjr)^

+ cos2:(;-sin2;<;. (Rule6.) 20. j ^ cosj:
(Rules2and8.)

21. ?£^. 22. -«. 23. ^-a;."^". 24. ("^"+
f
>"'".

4 JT m -\- n na(m + i)

25. ("^ +
f)"*"^' . 26. - 3 cosjc. 27. i sin^j;.

a(?;z +1)
28. secj;. (Ex. 12 above.) 29. 10 tan:v. (Ex. 11 above.)

30. — \ cos2jr.

Exercise 7

I. I =p/ x'dx where p is the linear density; 163-3 Ib.-ft.^.

2. 0'4244r from the centre of the circle along the axis of sym-

metry, r being the radius. 3. %r from the centre of the

sphere, along the axis of symmetry, r being the radius.

Example, p. 158

Examples, p. 162

I. (i) — 2 cos '/x (put z = Vx)
;

(ii) Vi -)- x^ (put z = i -{• x');

(iii) -| arc sin- (put x = a sin^, whence integral22a
depends on jcos^Sde; integrate this by parts); (iv) arc sin*- (put

X = sin9); (v) arc tan;i; (put x = tanff); (vi) i arc sec- (put
a a

X = a sec 6). 2. (i) x^ sin:r + 2x cosar — 2 sin^r;

(ii) - sin2;r + Jcos2*-; (iii) — arc sinj; -|-— Vi — aj^ + fVi

—

x'^\
2 3 9
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(iv) — Vi — ;tr2 arc sin^r + x. 3. Apply formula (7), p. 160.

4. By integration by parts make I sinP^ cos«^ dd depend on

jsin''-''^ cosiOdd; sin^-'^ cos« + '^ vanishes when ^ = o or
2

hence (^ slnod cosid dd — ^ (^ s'lnV-'O cos^O dd ; hence
Jo P + lJo

[2 sin'ifl cos^e de = H i^cosW de = m\ sin6l cos6l + 6^
' -'0 L Jo

Exercise 8a

'• —!= 2. — sinj; cos(cos at). 3. cos3;ir cos2;r+ 2 0055^:.

4. (i — 2jr — x')l(i + x^f. 5. sin2;r.

6.^^,. 7. a2/(a2 _ :r2)5. 8. ./i^.
I + ^"^ V I +^

9
2 _L 2 • 2 • '0- tanlr. II.

,

'

cos2;tr + ?j2 sm^'a: ^(i — ;«r2) (l — x)

"2- ;7^^- "3- ,, 15. ^V(i + cosecx).Vi — .r^ V(i — 2X — x'-).
^ '

14. (a + .r)»-i(i + Ar)»-i{;»(5 + :») + «{« + x)}. 16. "^''
(i + j;)"*!'

17. arc sina: + _
^

.. 18. |. 19. 2^ arc tan- + a.
VI — x' a

X^ Vl—X^ V «
20. sec2:r arc tana: + i^^. 21. -?. . 22. arc tan

'i—x^

23. -f-,. 24.
, ] ,,

. 25. - ^"-^""'.
26. —!—

27. sin2:r(3-4sin2j;). 28. ^-^„ ^-- 29. a(sin.r + cosx).
I + a:'' Vi + .r*

30. J' -= ^_f = -^j-^. Express -if as a function of ^, and
dx dz dx dzl dz dx

then eliminate z by means of .r = a(x — cos^).

Exercise 8b

j— a;i; » . 2. *
, , \ . 3. —7= arc tan,' x / 3 \

W2 +

»

a(ra + i) V6 \ V 2/
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[Consider integral /^-^,^.r = i/-^- Put. = ^l.,

hence l[_iilL- = ' f^^. Now apply Ex. i (v), p. 162.]

a

5. Remove brackets. Result is ^=^ + 6. Assume
3 4

g + 1 = ^^ whence integral is

^,^J-j-^,
- 7.

^"^
J

^^'
.

8. - ^^(i!+l). 9. tan^r + t^!^ (put tan;c = t).

X 3

10. siar — ar cos:r (integrate by parts). II. i(i + ar^) arc

tana; — \x (integrate by parts). 12. (« + *.r + cxfl^.

13. Result is ?^ + *^. 14. J- ' - '

4 5
'

' \^-xf (i-*)'

15. 2f — 2 sin;r + ^^^ (put i — cos^r = 2 sin^?, or expand
2 4 2

/^jl^ _1_ Mm+l
(i — cosjr)^ and integrate term by term). 16. ^—^ '

.

«fl(OT + I)

(put a:r" + S = a). 17. / tan^S = / tan^fl tan2"-=e dB, whence

the result. — (—1)" means that the sign of tan* is negative if

n is even and positive if n is odd. 18. +£—

£

r. 9 9 9V-3

arc tanj;^ ^. (Repeated integration by parts, the integral

finallydepending on question 3 above, or by division.) 19. x tan-.

20. (^ + — )—r—2 — I arc tan^r. 21. J{2arctan arc tana;}.

L(x^ + i) (x^ + 4) (^^ +1) x^ + 4

tegrate these fractions. 22. sin»«^ sin«:r = ^ cos(»2 — n)x

— J cos(ot + n)x. Hence ii m =i= n, I sinmx s'mnx dx ^ ^

jcos{m — n)x dx — \ jcos{m + n)x dx. If m = n, I sinmx

sin«.r dx = Ism^mx dx ^ ^ /(i — cos 2»z:i:) rf:r. The result

follows directly from these integrals when taken between

the limits given in the question. 23. Express the
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given product as a sum or difference of cosines of multiple

angles. 24. This result follows from Example 9 above.

25. If 4'{x) = ^(a + x) for all values of x, ^{x) must be a

periodic function of period u, whence the result is obvious

graphically. 26. <P{a) < ^(x) < </>(!>), whence the result.

-j-it>(x) must be positive for all values of x between (and in-
dx n
eluding) a and J. 27. <t>{a)(b — a) > / 'P{x)dx > ^(i) (5 — «).

-=-<t>{x) must be negative when a < x < b. 28. If <t>(x)

ax
is negative between a and b and steadily increases, then

I

0(a)(3 -a)\ >
\fl

4>ix) dx \ >
\ m (^ - «) I

• If 0W
is negative between a and b and steadily decreases, then

I

^(a)(b - a)
I
<

I I*
,f{x) dx \ <

\

^{b) (b-a) | . When

0(.r) changes sign between a and b, the integral may be posi-

tive, zero, or negative. If (p(x) decreases steadily from a to b,

^i"') (?""')> / ^W '^x, where f is the point where (p{x)

cuts the Ox axis. If ^(jf) increases steadily from a to b,

0(a) (J — a) < / ^{x) dx. 29. Let ^{x) be a function con-

tinuous between a and J. Join the points {a, ^(a)} and {b, ^(b)}

by a straight line. The gradient of this straight line is

r\ )~r( 1
^ jj. jg gyijent from a figure that there must be at

b — a

least one point between a and b where the gradient of f{x) is

the same as the mean gradient of the straight line, hence if this

point is the point x =
^, f(f) = '''(^) - '/'(«).

(b — a)

.-. ^(5) - ^(a) = {b- fl)^'(€) (i)

Now i'{x) is the integral of i/^x), .'. ^(b) — ^(a) = I fix) dx.

:. (''f(x)dx = ^'(€) {* — «}• Putting fix) = 'p(x) and g =

a -f- $(b — a) where ^ is a number between o and i, we get

/^<tix)dx
= {b — a)<t>{a-ire(b-a)} (2)

Equation (i) is also important. If we put J = a -|- A we get

^(a + h) = ^{a) + ^\!i)h = ^(a) + r{''+eh}h (3)
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This is a very useful form of tlie theorem. 30. sin'^ is

always positive.

/. Vi — J sin^^ lies between i and ^/ -

:. /' de > /' Vi - i sin^e de > /^ a/^ dd.

i.e. 1-571 > I > I •485. If we take the mean, I •528, the error

cannot exceed '*'•'„ = 2-8%.
1-528

Exercise 9

I- -^j\r+~c^ — ci] where Vca = f. 2. The integral

required is I = jg Vi + A^dx where A = Va X f^. Put

I + Arf = z^, when the indefinite integral becomes -^li.^ — z^)dz,

and I = ^rii+MI^ - (i+A£4)i _ ^"1
^,^^^^ a = Va X ?f

.

A^L 5 3 J

3. The curves intersect above the x axis where jr = o and

X = a, hence the area required is / ( ^2ax — x^ — "Jax')dx.

Put j; = a(i — cos S) in the first integral and we get

a^MT — ? I for the area required. 4. The graph is like
L4 3-1

a figure 8 on its side, 00, the x axis passing through the

centres of the two loops, and the y axis through the point

where the loops meet. Tlie area required is therefore given by

/a /cfi tr2 . „ . . ,

A / -s—;

—

«xdx when a is 10. Put:r^ = z and rationalize theV « + ^
2

numerator, and the indefinite integral is Ja^ arc sin-;+ \ Va*— x^,

whence the required area is ioo(ir— 2), when a is 10. 5. The in-

Ca \J2ax— x^
dx. Rationalize the numerator

and we get as the indefinite integral "•Jiax — x^-^-af
^ —

The latter integral is arc cosfi — -)> hence /
^"^^ ~ ^

dx
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= Vaaj; — x^ -\- a arc cos( i — -), and the required definite

integral is 2al '^2ax — x^-{- a arc cos(i 1 I . 6. Integrate

the expression for j/ between x^ and Xi to find the area accurately.

Compare the result with those obtained by the rule, taking first

the simple case when n = 2. 7. irrl. 8. 4irr^. 9. ^irr^k.

\0. iirh-^zr-A). II. Jn-^A. i2. ^ttWo. \3. liraH.

14. 2irra.

Exercise 10

2. 6a cosax — 6a^x sinax — x^a^ cosax. 3. n^ sin;«;ir sinnx

— 3>w»'' cosw2:c cosrear + ^m^n sinmx sinnx — m^ cosmx cosnx, i.e.

(n^ + 3»»^») sinmx sinnx — (m^ + ^mn') cosmx cosnx. 5. Dif-

ferentiate J/ twice with respect to x, and add m^ times j.

The result will be found to be zero, as stated. 9. When
f(x) 5= x'' every derivative is zero when x = o except the

fifth, which is 5 ! whence the series reduces to x^ as it should.

10. /{a -\-y) = tt>{jy) since a is constant, and 4'(y) = 0(0) + ^'{o)j'

+^^ + . . . + »-", i.e. Aa +y)= Aa) + f(a)y

+/>)y + . . . + -^'"'(f)-^. 12. Put :ir + x2 = z and ex-
2! n]

pand by Ex. 11 above. Result is i + 4:1: + io;i;^ + i6a;* + 19;!:*

+ i6:i:S + ioar« + 4^;^ + ^r*.

Exercise 11

4. The result follows from the working on pp. 208, 209, put-

ting — b^ = b^. At the end of the major axis (a, o), p = —

.

a
6. (i) Differentiate y and * with respect to d and divide the

derivatives. The result is the value of dyjdx, i.e. tani/'. The
result reduces at once to the value given by expressing it in terms

of-. (2) Use the formula f = I °*/l + (j^) <ii^ expressing -^

and the integral in terms of 9. (3) Ss = p5^, i.e. 4a

cosfd-^ = pS<l/, whence the result. The geometrical result

follows since /a = 2 X 2a cos^. 7. The tangential mass-

acceleration along the direction of s increasing is '">
-jtx The

tangential force along the same direction is — mg sin ^.
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.'. ^+^sin^ = o is the equation which determines the

motion, by Newton's Second Law. But sin ^ = — for a cycloid
' ' 4(1

(Ex. 6 above), .•. —, + £^s = o. If the body starts from rest
at''' 4a

(i.e. has zero velocity when < = o) at j = A, it mi^kt move in

accordance with s = A cosiat, because this equation gives

J = A when t = o and ds/dt = o when t = o. By differentiat-

ing this equation, it will be found to satisfy the equation of

motion, if «2 = j£ irrespective of the value of A. The radius
4a

of curvature at the point where the tangent makes angle f
with OX is 4a cos^, whence the normal mass-acceleration is

where v is the velocity of the particle at f. The re-
4a cosifi ^^2
action is therefore ( 1- mff cos ^ J

allowing for the gravity

reaction too. 8. In M = -=- ; M, E, I are all constant,
H.

hence R is constant, and the centre line deflects into a circle.

J/ = J=^ {x — l)x, if _y = o at both ends of the beam. If the
HI

weight is not negligible, we have to add (algebraically) the

deflection for a uniformly distributed load (p. 214) to the

deflection arising from the couples. Q. y = -^=^\ — —)
2EI\ 4 6

/

I W/3 W/3 ,- p, W(/ - xf

'WPx , WP Wl'— T ^- i Tend = — •26 3

Exercise 12

I. (i) A minimum when x = ^, a. maximum when :>; = i by
applying the analytical test, (ii) djz/dx = o when *• = o, o,

-\- 3, — 3. The zero values of x make d^yjdx^ zero, and these

are not turning values. Maximum value when x = — 3 ; mini-

mum value when j; = -f- 3. 2. If R is the radius of the

sphere and r of the base of the cone, h being the height of the

cone, r = h tzxiO = R sin2e. ,-, vol. of cone = ^ !il2^.
3 tand
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The function of 6 is the only variable part of this formula, and

f, ^ = a'^ — 2x^ + x^ where x = sin0, whence we find that
8 tano

this is a maximum when x^ = i, i.e.
^'"

„ = 31 and the volume' tan^ 27'

of the cone is |?7rR^ and the radius (r = Rsina^) is ?—? R.
3

3. A square should be cut out of each corner, the side of the

square being —i ——, where a and b are the
6

length and breadth of the piece of paper. 4. Differentiating

we get i>'{6) = cos^ — 2 sin2^. This expression equals zero

when cos^ = 4 sin^ cos6', i.e. when cos^ = o or sin6 = J,

i.e. when 6 = 2irn + - (i) or ^ = wtt + (— i)"^i (2), where 6,
2

is the angle lying between o and - whose sine is i. On plotting
2

the graph of sinO + cos25, it is easily seen that the values of 6

given by (i) and (2) interlace. The first maximum occurs at O^,

after which the turning values are a minimum and a maxi-

mum alternately. 5. The corners of the triangle folded over

and the corner of the unfolded page lie on a circle, whence the

point of folding at the lower edge should be at the point | along

the lower edge. 6. Express the distance between P and Q
at time ^ and differentiate it to find the turning value. This

method is long and clumsy. The following alternative method
is briefer. Superimpose on the two bodies the velocity of one of

the bodies A reversed. Then the body A is brought to rest, and
the other body B moves with its own velocity, compounded
with the velocity added, along the diagonal of the velocity

parallelogram. The velocity relative to A (at rest) is then

Vk" -|- ''^ — 2UV cos^. Now apply the principle of moments to

the resultant velocity and the component velocities of B. 7. If

r is the horizontal range, the given equation shows that

r = 2h sin25, whence drjdd is zero when cos20 = o, i.e.

d = 45° for a turning value. That 6 = 45° gives a maxi-

mum value of r is obvious from the physics of the problem.

8. The potential energy due to the charge of electricity is

— z= w, and -^ = — ^, hence the equation for equilibrium
r dr r^

becomes Sw = 2TSs — pSv — ^Sr. .; o = 2T X SirrSr — p
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X Airr^Sr — ^Sr, i.e. * = 4_ — — -,, i.e. the equilibrium pres-
r^

^^2
r 4irr*

^^
sure is reduced by ,. 9. 28" vacuum. 10. -;- = wV

' 47rr'' dt

(cosw/ + - cos2<i)/), whence turning- values of v occur when

cosu^ + - cos2u>t = o. Express CQS2iat in terms of cos'w^

and we get cosu^ = —f— i ±^i + ^ |. The negative

sign to the root is inadmissible as it would make
|
cosu/

| > unity,

in general. Hence lot = arc cos —-( — ' + » /i + — ) |,

and maximum velocities occur when ^ = i. I 2»7r + arc cos—
/ / S^^T

"*- '^''

(^—1+^1 + -n)\'< 7-88 f.p.s.; angle turned through is 85°.

Exercise 13

y/i+x^ ^x^ + a' X ' " ' sin2.r'

{e) — sec:r; (/)cosec;>r; {g-)e'{cosx— s\nx); {h) e^'^icos^x— sinx);

(?) cot2;i;. 2. / ^^a , ^a = log«{^ + V^^ + a^}; /secj: «^;r

= '°g' (\/rT^ ) = '°^' '""(^ ~ 0= \cos^cxdx

= — loge . / ' ~" ^°^^ = — log, tan-. 3. Differentiate the right-

hand side of the equation. 4 and 5. By integration by parts,

and the integrals obtained in questions (3) and (4). 6. In-

tegrate by parts. 7. The integrand equals -—3— -|-

(^-1-3)' {x + i)

—
,—?—r, hence the integral is — -.—2—. -U 2log.( '^ "j"

-3).
{x + 2) (* + 3) ^ + 2/

8. - /^+'2« + l°g«(^^)'- 9- -^. = W-2x
x' + bx -^^ S \x -\- 2/ I -\- 2X^

^, whence the integral is — — £- -|- 1 logeVi -j- 2X^.
' (i + 2*2)' ^

8 8 ' 8

10. ^ = A cos./^t -J- B sin. /^t Prove by substitution.

When / = o, e = e and ^ = o. ^ = - k ft sin, l^t
dt dt SJ I '\ 1
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+ B^^ "^os-y/f'• ••• o = - A^f sin 0° + By/| cos 0°.

,•. B must be zero and 6 = A coso°. .'. A = 6, i.e. 6 = Q

COS. / ^t is the solution required. The period of this function is

2ir. If then r is the periodic time,' /^r = ztt. .', r = 27r. /—

.

II. Show that the force due to buoyancy is a restoring force

and proportional to the depth of immersion, approximately.

= 27r / S-, where m is the density of water. 12. (i) If

V = Ks, V = o when j = o, and how can the body begin to move

at all? (2) If z» = KS, then logjj = Kf, i.e. loge(-' j = k(/i — ^2).

i.e. the logarithm of the ratio of distances travelled should be

proportional to the difference in times of transit. This is not

true for motion due to gravity. 13. Taking one of the sup-

ported ends as origin, the undeflected axis as axis of x, and the

perpendicular through O in the plane of bending as the axis ofj/,

the equation of the deflected axis is

(-^)" = >--) ()

where A is the deflection at the centre, initially. The total

kinetic energy when the tube is crossing the x axis trans-

versely is n
\pa^\y''dx, (2)

where p is the mass per foot, w, the "angular velocity" of the

harmonic motion, i.e. 2Trn where n is the frequency, and y the

initial co-ordinate of the deflected centre line of the tube. In-

tegrating (2) by means of (i) and equating the result to M^, the

initial potential energy where jn is a constant, we get

^7- (3)T = 3.25

where t is the required period. We can get p. approximately

thus : When the tube is bent by a central concentrated load W,
the potential energy is ^WA^ ft.-poundals, where g- is the

acceleration due to gravity. But in this case, the central

A a ^- A • K A W/3 . 48EIA ^,
deflection A is given by A = . .•. W = ^— — and

48 h.i /
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In the example given / = lo ft., p = 0-52 lb. per foot,

EI^ = 24000, whence t = 0-309 sec. It is a good practice to

check "dimensions" of a formula of this kind [T] = [O] [L^]

[M L-i]» [ML-2L^LT-2]-», i.e. [T] = [T]. The more accu-

rate formula is t = o-6'i6l^^ I „^ when the correct deflection
•* V EI^

curve for a distributed load is used. (See Morley, Strength of
Materials, p. 397, 1908 edition.) The effect of water in the tube

is to increase the mass per unit length, without increasing the

flexional rigidity. The period is therefore lengthened.

Exercise 14

I. The question leads at once to I-^ = — /iu (see p. 267),

u = Oe 1,1 = 2240 X 9, w/0 = 0'5, whence /x = 46-5 poundal

ft. per radian per second. 2. e = T-^, p. 278. .\ ri = T^.
at at

:. d-p = ^idt. :. 0, - 01 = ^(Qa - Qi). 3. Q2 - Qi

= /a ^Z^. P- 295. .-. 02 — ^1 = A*""V I
where p." = %^.

4. 0,-0, = (100 X '^^y-S') lines. .-. ,." = '°°X'^X7-5' = gg.
^ 4 ^ 4X65

T-. ui ^ ^ 100 X TT X 4^ , d^
Double. 5. = ^^-i- = 400 tt. .*. -=^

4 at

= 40OO7r. .'. e = 100 X 4000^- X 10-' volts [e = T-^ X 10"'
dt

volts] = 47r X io-» volts. /. j = f = 4!LAi2_ = 25 X lo-^'•SO
ampere. 6. Clearly the flux through the coil varies sinus-

oidally, hence, in the usual notation, = <f> cosw^. .". -f
dt

= — *« sinu^. /. ^max. = *uT X 10-° volts numerically. 4>

= [o- 18 X '^^l^'J.T = 20, « = 2T?^. /. emax. = S'S X 'O"'

volt. 7. Consider a uniform magnetic field of strength H,
and a perfect conductor carrying a current « and of length /,

lying in the field perpendicular to it and moving with velocity v
perpendicular to its length / and to the direction of the field.
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Clearly -£ = Hlv. .', ei, the rate of working, is Hlvi e = T-f .

at L dtA
But this quantity is F/z;, where F is the resultant transverse force

on the conductor per centimetre. .'. F/z/ = Hz/d, i.e. F = Hi.

Hence, in a uniform field, the force on a conductor is pro-

portional to the field strength and the current. A ballistic gal-

vanometer is so constructed that the coil moves in a uniform

radial field. Hence the force on a vertical element of the coil is

H/i, and the total torque is therefore SH/iV, where r is the

radius of the coil. By symmetry every element produces the

same torque, .". SH/m- = HL«>, where L is the total length of

the elements, i.e. the electromagnetic torque is h'i, where

K = HLr, a constant ; hence the torque applied to the needle is

not now zero but hi, and we get, dividing h' by the moment of

inertia of the needle, -^ -|- i^Q = hi, where A = -, I being the

moment of inertia of the needle. The complete solution of the

hi
equation is ^ = A sinw^-|- B coswf -|- -5, if i is constant. Whence

Q = o when t = o gives B = — -J, and -— = o when ^ = o
a'- at

gives A = o. .*. ^ = -| [i — cosw^].

Exercise 15

I. If a is original concentration, and x the amount transferred

in time t, then i log.t ) = k if the action be mono-
t \a — x'

molecular (p. 308). Using this formula, we get the table

t intervals a — x k

1 88 (0-128)

2 72 o-i68

4 S3 0-159

7 29-s 0-174

8 25-2 0-172

II 15-2 0-171

13 ii-i 0-169

which shows that k is practically constant. (Lewis, A System

of Physical Chemistry, Vol. I, p. 433.) 2. If reaction is mono-

molecular, we have - logj —-— J = t. Testing the numbers,
t \a — X'

we find K is nearly constant at 15 X lO"". (Lewis, A System
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of Physical Chemistry, Vol. I, p. 436.) The chemical equa-

tion merely gives the proportions in which the cane sugar

changes into dextrose and laevulose. 3. The formula is

\ '°^'(§) = *« ^^ ^' = **^"' Q = ^- '• ' " ^^' '^''^"^

/j = 7.1 wk. and t^ = 21 -8 min. 4. If the formula is mono-

molecular, the formula is

"1 = ]^°s.^^ W
but if it is quadrimolecular,

"^ = 1 aicJ^' ~A ''^ P- 3°9 (^)

The numbers work out as follows

:

i (hr.) Ki K4

X 108 X Io2

o —
7-83 2-36 1-73

24-17 2-37 2'OI

41-25 2-35 2-29

63-17 2.38 2-88

89-67 2-41 3-85

(£[ is more nearly constant than k^ is. The equations may be

I PH3 -^ P -H 3 H.

*
* J-extremely rapidly.

2 XT. f ri2-'

In this case, the first (monomolecular) reaction would dominate
the rate of the complete reaction. (Lewis, A System of Physical

Chemistry, Vol. I, p. 443.) 5. (a) Differentiate the given ex-

pression and substitute. The two sides of the given equation

will be found to be identical, (b) When x = o, sinnx = o and
c = Cq ; when ;i; = /, sin«/ = o. ,'. nl = mir (m = o, i , z,

3 . . .). .". c = Ca + ae i^ smt-y-x\. (c) Each term

separately satisfies the given differential equation, which is of

the first degree.

Exercise 16

I. 0-57(7 = 1-4)- 2. 0-52(7 = 1-4). 3. 0-32. The
available heat energy is 371 B.Th.U., and the heat absorbed is

1158 B.Th.U. 4. The temperature of the mixture is
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(T ' fl \
-g + ^°SeJ), i-e. 0.3I3 unit of

entropy. The water loses 20 log^-^^^- = 0.308 unit of entropy.
278-7

Net gain of whole system =3 0-005 ""'' °f entropy. 5. Con-
sider the gas A. At any moment it is slowly expanding against

a force p, due to the piston. This expansion is reversible, for

if p is changed to ^ + S^, the expansion would cease and
compression would begin. The expansion is also adiabatic ; it

is therefore isentropic. Similarly for gas B. The friction of the

piston balances the difference in the gas pressures, and work has

been done irreversibly against friction and converted into heat.

Hence the entropy of the piston must have increased. Hence
the total entropy of the system has increased. 6. Work area

is [/, ^"1 + /
'' pdv — p^ V2] where pv" = k. Whence work done

is Pi'Vi] (^j " — I
I

ft.-lb., i.e. work done per cubic foot

(©2 = i) is 144 pA {—] » — I I if /, is in pounds per
n — I L\^2 -

square inch. 7. Work per minute = 144—^

—

^p\ ( )^^ — '
|.

If A = A + ^A> I ( , ) " — 1 = r -^ nearly, whence

H.P. = 2M-Vp^. 8. Follows at once from Ex. 6.
33000

9. z'a = 1-2 c. ft.; v^ = 0-2 c. ft.; r = 6; 62 = 600" F. abs.;

p2 = 14 "7 Ib./sq. in.; gas used is o-o6 c. ft. per cycle. Cal.

Val. = 600 B.Th.U. per cubic foot = 36 B.Th.U. per cycle.

I c. ft. of air at 32° F. and 14-7 lb. per square inch weighs

0-0807 lb. Hence: (i) Weight of gas in cylinder is -0807 X ^23
600

X 1-2 = 0-0793 lb. (ii) During compression pv^'^ = a con-

stant. .•. Pcompressiori = 14-7 X 6''^ = 174-2 Ib./sq. in., and, since

-=- = constant, ^compression = 600 X ^^ X — = ii8s°F. abs.
1 14-7 1-2

(iii) The rise of temperature Ad, due to combustion, is given by

0-0793 X 0-18 X A0 = 36. .-. Ad = 2523° F. /. ^expansion

= 2523 + 1185 = 3708° F. abs. The corresponding pressure

is: (iv) Pexpansion = 174-2 X ^^ = S43 Ib./sq. in. (v) The pres-

sure at release {pv^ = «) is given by Prelease = |^ = 46 Ib./sq.

(D102) 29
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in. The corresponding temperature (^ = constant) is given

by ^release = 37o8 X ^ X i^ = 1878° F. abs. (vi) The ef.

543 *^

ficiency is {i — (if} = 49-4 %• (v") The Carnot efficiency is

3708 — 600 ^ 83-8%. 10. 0"7S. 0-52; internal energy at
3708

A, 89-1 ; at B, 66-4 B.Th.U.; work done, 2040 ft.-lb.; heat lost

to walls, 20-I B.Th.U. II. 6-3 h.p. 12. Volume of the

reservoir is 9-05 c. ft. 9-05 c. ft. of air at 500 Ib./sq. in. and

275° C. abs. weigh 24-7 lb.; hence 24-7 lb. of air remain in

the reservoir. This air occupies 2-8 c. ft. at the initial state.

If this air expanded adiabatically, the -final temperature would

be ^2 = 288 X 3 -23-"58 = 184° C. abs., for 3-23 is the ratio of

the change of volume. The actual temperature is 275° C. abs.,

hence heat from sea is 24-7 X 0'i8 X (275 — 184) = 404 C.H.U.,

i.e. 404 pound-calories.

MISCELLANEOUS

I. (i) Put . ' ., = .—^2 + -^ + - To find A,
x{x — if (x — ly X — 1 X

multiply both sides by (x — i)^, and then put x = 1; thus A = i.

To find C, multiply by x and put :c = o; thus C = 1. Then

B is easily found to be — i. Integral is + logA;

— log(ar — i). (ii) Integrate by parts. Integral is ^x^

logj; — tV**- ('") P"^* X — i = z- Integral is log{x — f

+ y/x^ — -^x -\- 2). (iv) Put tan- = z; indefinite integral be-
2

2. (i) Put ^ = z. Integral is arc tan(e*).u

= arc sin;t; + V(i - x^. (iii) \ { -^ , ', ) dx
3 \x — 2 x^ + ^/

= 2 log(:i; — 2) ~\ Site tan^x. 3. (i) Derivative is
'

=

.

v(i — x')

(ii) The function is arc sinj:. (iii) Integrate (i — x'')'^ once,

result is arc sin;c + Cj integrate this again, by parts, function
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required is x arc sinj; + \/(i — x^) + Cx + D. 4. (i) Express

integrand in form ^ + 4 + - + -^— Integral = ii- + -

— log*' + log(:c — i). (ii) J«*(sin* — cosj;). (iii) From re-

peated integration by parts, integral = e^(x^ — jx^ -{- 6x — 6).

5. -^ = I = — —.. Equation of tangent at (k, k) is
ax x* x'

:£ + Z = aK OP + OQ = aW + am = a. 6. [e'^ sin":ir dx

= ifi"* sin"^ — l-e'^n sin"-'j; cosj; dx, by parts, = -e" sin"*
a J a a

— — e"* sin"-'* cos* + —^ \e^{— sin"*- + (« — i) sin""'* cos^*}^^^.

The integrated terms vanish for * = o and x = p. In last

integral write sin""'* cos'* = sin"-='*(i — sin'*) = sin"-'*— sin"*.

Thus [^e<^ 310"*^* = -2 re^{{n — i) sin"-'* — n sin"*} dx.

Hence (i +^\ {^ e^ sin"* dx = "^" ~ '^ P e°» sin"-'* dx.
\ a^J jo a? JO

7. (i) fsin™* cos"* dx = fsin™-!* -^ (— ) ?2!!!^ rfa: = ?—

sin™-'* cos"+'* -|- —;— /cos""'''* (m — i) sin""-'* cos* dx.
n -\- 1 J

In last integral write cos"'*''* = cos"* — cos"* sin'*, and pro-

ceed as in Ex. 6. (ii) By (i), pcos** sin'* <f* = \ pcos** dx
Jo Jo

=^ 3^ - (p. i6i) = — (iii) pcos**(i — cos'*)-j-(— cos*) dx
4-2 2 32 Jo dx

= / M*(i — u^)du = ^ — J = ^. 8. (i) For any value of

X, f{x) is increasing with * iif'{x) is +, decreasing with * if

f'(x) is — . (2) Where the graph oi f'(x) crosses the axis of *,

/(*) has a turning value, a maximum or a minimum according

as the graph of y'(*) crosses from above or below as * increases.

(3) Turning points on graph of f'(x) correspond to points of

inflexion on the graph of /(*). In a cone, V = ^irr'^h,

S = irr^r^ -|- A'. /. S' = x'r* -j- gV^*-', which is a maximum
when ^ir'^r^ — iSV'*"' = o, which gives k = ^2r. Then

, _ . . J. length of base
angle of sector, in radians, =—f

—

—

tj =
slant side y/{r^+ h'') V3'
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9. (i) Put x — i(a + b) = a, so that (x — a) {x — b) = u>

— i{a — bf. (ii) Take lo ordinates, viz. at j; = i, i-g, 2-8,

&c. The rule then gives 2-312; the correct value is 2 -303.

'0- (0/((^.
-
^ i - j^- (") /v{(.-o^-x)

= log(ar — I + Vjf2 _ 2j;). (iii) Put tanj: = «. Integral

= — arc tanf" *^"^V (iv) Put ^ = a sin^, then tan(9 = t.

ab \ /

The indefinite integral = /-jf-£2^^ =
j{-^,

-
(.^-%V" + C-

}'^^ = -tan^-^^arctan^:^.

1 1, (i) r /(;<:) rf:r = A + iB + iC,/(o) = A, f(\) = A + ^B + JC.
J

/(i) = A + B+ C, and result follows at once, (ii) Put x = \-{- u,

and express <)>(x) in powers of u. 12. (i) -; or -;—-.
sinjf cos;r sin2;i;

(ii) e^'+i ^ „. (iii) Find ^ and ^, and either test result
(jc^ + i)'' ax dx^

by substitution, or else eliminate a, b from the equations giving

dy d'y .3 /.» dy _ dy _^dx _ sing _ 2sin^gcos^9
^' Si' ^2' ^^' dx~ W ' dd 1 + cosg 2 cos^^e

ft ^e ft ft= 2aHi + cos 6) = 4a* cos^-. Hence -57= = 2a cos-, j = 4a sin-
2 aC7 2 2

V-
= 4a sin0. (iii) p = -=- = 40 cos0, intercept on normal

2a — y all + cosg) _ 2a cos^iA _ ,„ ^.^ ri = —5 ! i =: = 2a cos 9.
COS^ COS0 COS0

14 /"
-r + i(^ + 7) + {» - M/3 + 7)} a^ ^ ,(^ 4- BUx + y)\i

'+{<^-W + y)} ^og[x +W + y) + {{x + P)(x+ y)n 15. (i)

X logx — X. (ii) ^x^ log^t: — ^xK (iii) -xe^ -^. (iv) From

the graph of logX it can be seen at once that logX < X — i

;

for the line Y = X — i is the tangent to the graph at (i, o),

and the log graph lies below this tangent. Put i + ^x for X

;

then log(i + ix) < ^x and x log(i + ^x) < ^x\ from which the

result stated follows. 16. It is easier here to deal with
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- = X + I -i- - := z say, and find the minimum and maximum
y X
values of z. For x = — \, y = ^ \, a minimum; and for

X = I, J' = J, a maximum. 17. Deal with the reciprocal of

cps,^, proving (i - cf secV = ""? + '^T/^ = _L_« +^sm^C* cos^C' cos^^ sm''^

= I + tan2^ + <fl(i + cot^^). Put tan2^ = x, then i + x

4-<r^(i+-) is to be a minimum. 18. (i) Put integrand

= r^^ +-^ +-^ (see Ex. i (i)) ; integral = -\-^
(x + if X -\- \ X— \ -f+ I

+ \ log^ ~ '
(ii)

I
4(i + C0S2JI;) dx = \x \-\ sina*-. (iii) First

X -\- 1 J

formula is n
[sin(2>. + i)^ - sin(2>» - i)^ ^^ ^ ^;„^^^_ ^j^j^j^

j sin-r

is proved at once from the trigonometrical identity sin(2» + i)x

— sin(2» — i)x = 2 cos2»a: sin^i;. For second formula use the

identity sin^(» + i)^ ~ sin^w*' = sln(2« + i)x sinj;. For the

definite integrals, first formula gives Jn+i — ^n = o, so that

Jn = •fi. or Sn = — . The second formula then gives »«— 'Z'n-i = -.
2 2

In this result put « = i, 2, 3, &c., and add. 19. wj y^dx
J

= — 20. Put {p, pi, p^ -^ respectively = q, q^, q^ Theh
24 (

^ + i — 2 is to be a minimum. 21. If r is the radius and v
1 9i

the velocity at time t, then the law that change of momentum

= applied force gives T-(r't') = r^g: Also y = r„ + M, where
dt

k = —, a constant. Hence —-(r^v) = rr-^(r^v), or r^v
dt dr- ' kdV '

= iTr'dr = ^Jr* -»-„*). Ii V = '^ = k"^, this gives x'
k]r„ ^k^ "', dt dr ^

= ^^T (r — ^\dr = ^^(^2 + ^ -
2»o2). This equation will

give fj, the value of r when the drop reaches the ground, where

X = h. The quadratic for Tj is {r^ — r^Y — —< so that
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Using foot-second units, we have k = 'f^-io-*, h = 6400, g- = 32,

»-j = ^ X 0-04. Thus the final rad. = 0-04205 in., and

then from the equation r = ra + kl, we find the time = 20-5 sec.

22. (i) Equation of tangent at (a, b) is y — b = — 2a^(x — a).

(ii) a = 0-58, b = 7 '8, intercepts = 8 '4. (iii) Area = 12.

23. My = — Mrio'{cosut + - cos2(i)/). This is numerically

greatest when the cosines are both equal to i, i.e. when / = o,

— , 3^, &c. The maximum value of the inertia force is .*.

fa) w

M!f!r(i + ^)
lb., if M is in pounds. 24. (i)-^-r (i +

^).

or —y— nearly, (ii) For two reasons : (a) the velocity coefficient

is -, and the inertia coefficient y, (b) sin2fa)/ is very small when

the velocity is a maximum, whereas cos2u/ is equal to i when
the acceleration is a maximum. 25. 7-56 ft.-tons or

16,900 ft. -lb. 26. (i) See p. 292. The T.P. occur where

^- = o or — ^ sinn/ -}- « cos»^ = o. Hence tan»^ = ^. If
at k
we take an acute angle o so that ^ = tana, then nt = a, o + t,

a 4- 2jr, o -f- 37r, &c. , give the T. P. The maxima and minima
occur alternately, d being -\- at the maxima, and — at

the minima. Thus maxima occur when t = ", - -|- —
n n n

- \- 4^, . . . The values of Q, or Q^~^* saxnt, for these values
n n

of t are in G.P. with common ratio e~'''^''^\ (ii) Given

— = 1, and («-ft"2T/»)* = i; if T is time required in seconds,
n

tanreT = y But e^* = 4, ^ = J log«4 = '3466, tanajrT

X . I
i8.i3, 2!rT = -— arctan-^^— , T = J

—
•3466

•^'
2 18-13' 18-13 X27r

nearly = 0-241. 27. Energy consumed is proportional to the

resistance R, and annual charges for copper are proportional

to the cross-section, i.e. inversely proportional to R. Hence

annual charges = a +—, value of energy lost = cR, where
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a, b, c are constants. =- + cR is a minimum when — ^„^ c

A
= o or — =: cR. Let section = x sq. cm. Interest on cost

R
r JT X Q X 2-2046 X 6 X 240 . c

of copper = — ^ 3—1^ O—a. pence, cost of enerev*^^
1000 X 2240

^ "•'

consumed = i X i-6 X 10-' X 5°o X 500 X 12 X 365 X 3 e.
X X 1000 X 4

Equating, we getJc^=io3and;i:= iO'is. /. section=iO'is sq.cm.

28. Take moments about centre of bowl. 29. ot-=- = F — ai/^.

At full speed v^, % = °- .•. F = «V. '"^ = «(V - ""% £

^ = V—2- -t= - loge^^^^tJ!. But Fz-o = P, .-. P

= «V- Hence t = ^ loge'^^i-^ =^ log^^^ti^. In
2av^ Dj — z' 2P V,

, . 2000 X 66 X 66 , 4S + 30 33 , „ 33example, t = loge^3_!_i = i2J logcS = =2=2

2 X IS X SSo X 32 ^ 45 - 30 2 ^ •' 2

X i'6i = 26-6 sec. 30. See pp. 292-5, and p. 296, Exs. 2, 3.

When a current of i amperes is reversed, the formula for change

of flux is — X 4ir X turns in primary X turns in secondary
10

. . area of i turn of secondary , .,X =
i—^

—

-.
i = I -6 X IT X 500 X 500 X IT

length of prmiary

X (15/4)^ -j- 40 = 1,390,000 lines. We have now to find the

number of divisions, undamped, corresponding to 65 divisions,

damped. Now each maximum swing = preceding maximum
swing X e-^. .'. loth maximum swing : ist = e-^^K Hence
fi| = filSA. But ist undamped swing : ist damped swing

= e2 = (|J)A. /. 1st undamped swing = 68- 1. /. Flux per

undamped scale division = ^>j9°'°°° — 20,400 lines. If resist-
68 • I

ance were halved, first fling would be doubled, 136-2 divisions.

31. (i) See p. 151. (ii) If pv' = A, work done =

(iii) ^2 = a(-)' = 41 = S"^4 "' P^"" ^1- ^"- ^"""^ ''°"^'

by (ii), = 7-54 ft.-lb. 32. (i) If ^ + S;> = pressure at eighth
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z + Sz, then 5p = — g-pSz nearly, when hs is small, p being in

absolute units. Hence -f = — gp = — ff^P, since p is pro-

portional to p when temperature is constant. -^ = — ghdz

gives log^ + C = — ffhz; and if ^ = ^q when z = o, then

log^ = —gAz and :2. = g-cAs^
^;;) Upward thrust = weight

Po Po
of air displaced. This weight of air, when lowest point is at

fh+d
height h, is / pSdz, where S = cross-section of sphere at

height z, and d = diameter of sphere; also p = p^'i^', so that

[h+d
weight of air displaced = Poj Se-i^dz. Put z = h -{- {, and

/d rd
S'e-i^e-f'fdt = Pffi-i^^ X / S'e-i^idt = e-M*

X weight of air displaced when sphere rests on ground
= e-/»*{M + m)g: (S' is the cross-section at height f above

lowest point of sphere.) Sphere will rest at height h if

this last expression = weight of sphere = M^. Hence

e-^h = M

—

^ ^ loge^L+J^. 33. If a drop of

water is introduced into an enclosure containing vapour and
water in equilibrium, evaporation will diminish the surface of

the drop and therefore its surface energy, but will increase the

remaining part of the energy of liquid and vapour. Equilibrium

will be reached when the total potential energy is a minimum.
Now consider i lb. of a vapour obeying Boyle's Law. If we
reckon its potential energy from a standard density p^, the

increase in potential energy when it expands to density p is

given hyW = - r pdv = - RoT — = - Re log«ii = R^
J Vo J Vo V v„

loge— ; since vp = v^p^ = i. Consider i lb. of water. We
suppose it to be incompressible, so that its density <r is constant,

and it has no elastic potential energy. We may therefore write

Wvapour = Rd log/ + /{d) per lb. ; Wwater = ^(61) per lb.
Pa

Suppose there are f lb. of vapour and i) lb. of water, and in

the first place let the water be free from surface tension and
electrification. Then the whole potential energy W is given by

W = fRe loge£ -t- 1/(6) + VH0) (0
Po
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Suppose everything takes place at constant temperature. When

there is equilibrium we must have -^— = o. Now, if M is the

total mass, and V the total volume, supposed constant, then

{ + 1) = M and ^ + 2 = V. Thus from (i),^ = RO loge^
P " dz Po

+ ^KS - ^ +/(6») - <t>(e\ for 1, = M - f and ^ = - I. Now

I = V - 5 ^/'?\ _ I cn^ . S * _ , _ P

p I

-. ii^ = -' a"d ••• - ^ = I - -• Thus, from (i).
" rff \P/ <r P d^ 0- ^ "

^ = R0\og^-Rel + n6) (2)

Thus, in equilibrium,

KdXoge^ -R6l+n0) = o (3)
pa «

This is the normal equation of equilibrium. But if some physical

cause, such as surface tension or electrification, makes the"

potential energy of the system increase by X, then we must

add on the left of (3) a term —^, so that
«?

R^ log/ - R^^

+

m +^ = o. (4)
Pa a af

where p' is the new equilibrium value of p; we may put

p' = P + Sp. From (3) and (4), by subtraction, we get Rd

{logep - logep') + Rfl^^ -^ = o, or (since 8 logp = iSp)

_ R^«P + R0«P = ^, or Ref-^^SP = - ^. Now ^ = ROp.
p ' <r dV "P d!i

'^

.*, &p = RBSp, and we get finally

«^=-^pf (S)

Surface Tension.—X = ^irr^T, { = M — '^r^a. .', -j-

= ^"•''V^ = - 51. Hence ip = ^S-'L. Electrification.-— ^irr^adr ra a — p r

V e^ dX. e^ J . a J e^ ^j. PX = —
, ^ = — -——„dr -. Airr^adr = ^ r-, Sp =

2Kr d£ 2Kr^
^

STrKT-'o-
'^

<' - P

w^—.. The effect of electrification is therefore to diminish the

equilibrium vapour density, and so increase the tendency to the

deposition of vapour on the drop. An electrified drop of rain



442 APPLIED CALCULUS

should therefore be larger than an unelectrified one. This,

perhaps, explains the large size of the drops of rain which fall

in thunderstorms. See Poynting and Thomson's Physics (Pro-

perties of Matter), p. i66. Seventh Edition ; also J. J. Thomson's
Applications of Dynamics to Physics and Chemistry, 1888, p. 158,

&c. 34. (i) See p. 349, (ii) 0-614. (iii) i — {-\ = 0'652.

35. (i) The dryness fraction at the final point must be such that

the entropy in the initial and final states are identical. If g
is the dryness fraction, then (i — g) lb. is water, q IbT steam.

Entropy = /^^ + ^, assuming tli»t we have i lb. of water

at Of,; for we may{>ass from the initial to the final state by first

raising the water to 6 without evaporation, and then evaporat-

ing q lb. of it at 6. Thus ^ = o- loge^ -)- ^. Suppose the

condition of the mixture is given at 0^ and we wish the value

of g at ^j- Since 4> is constant, we have a logeO^ + ^^^

= T logc^i + 2l_!, which gives q^. (ii) If ip and q are constant,
"i

a logeS — « loge^o + ^ = «"
, a constant. /. a loge^ = —^

T -2i
+ a', logc^ = _ £^ + logefl, e = ae "». 36. (i) See

p. 340. (ii) dQ = CvdO + pdv = CvdO + ^. /. idQ
J

1)" J
= C»(^2 — ^i) + (A^'i ~ Pt"^ (see Ex. 31 above)

= CrKO^ - 6,) + -^—{Rd, - Re^) = (c„ - -B-) (^2- 0,).n — I \ n — 1/

37. Consider the cycle for 1 lb. of water: (i) Heat it as water
from T to T + ST. (2) Expand it to vapour at p -\- Sp.

(3) Cool it as vapour from T + ST to T. (4) Condense it to

water at T. Then work done per cycle = [{p + (g-~) ST} — p]
/?i*\

\oT/v
(V - «)) or (V - w)f|2.j ST. By Carnot's Theorem (p. 359)

this = —- X heat taken in = -=- X L, L being in work units.

Divide by ST, noting that T^j and (j-\ are reciprocals,

and the result follows. 38. Apply the result of Ex. 37 to

I gramme-molecule (p. 301). Let v^ = volume of vapour and
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neglect the volume of the liquid. Then, taking 6 for tempera-

ture. L = v,ef^, v, = M, so that L = ^ ^. If P is

the internal work of evaporization, L = P + pv, ,'. P + R^

logfl = R log/ + C. .-. R log^ - R log|2 = -| + |.

/. R logMs = ?('_'"). Now, by the Kinetic Theory of

Pi"i ^"1 "2'

Gases, p is proportional to NV^, where N is the number of

molecules leaving the surface per square centimetre per second.

Thus R log^i^^^i = pfi- - i-V In the electric case, if

e = charge on an electron, then i = N« and R = 2. Hence

iwrw) ""*f -*l - '««^-*f.' '"" • •"

"

constant. /. —^ = /Je^fl or » = D0% 28 {^Electrical Properties
t

of Flames and Vapours, H. A. Wilson). 39. The vehicle of

energy is the unit quantity of electricity. Consider a cycle:

(i) Allow unit quantity of electricity to pass through the cell under

electric force E+ (^=JST, at constant temperature T + ST.

(2) Allow the temperature of the cell to fall to T. (3) Pass unit

quantity back through cell under force E. (4) Bring cell back

to initial temperature T + 5T. The electrical work done

= E + (||)8T - E or I^ST ergs, and this =
^J

X (heat

taken in) by Carnot's Theorem (compare Ex. 37) or (heat taken

in) = T==. Now some of this work is derived internally by

3E
chemical action, so that net input of heat = E + 5~5T — X, or

E - X approximately. Hence E - X = T?^. 40. Put a

film through the following cycle: (i) Stretch it at temperature

T + 8T to area A + 5A. (2) Cool it at A + 8A to T. (3) Con-
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tract it at T to A. (4) Warm it at A to T + ST. Surface

tension in (i) is S + (|=] 5T. Work done hy surface tension

in (3) is 2S5A (considering both sides of film); in (i) it is

_ 2(S + ^ST)BA. /. Net work done = - a^STSA. If
ST 01

H + SH is the total heat absorbed at T + 8T and H the heat

rejected at T, then (p. 360) ^ ^ ^^
^

T"
•' ST ~

T'
^""^

5H = net work done = - aUsTSA. .'. H = tI^ or

H = — 2T~3A. In forming a film of area A we have there-
oT

fore to supply energy (as work and heat) = 2SA — 2T=A.

Hence surface energy per square centimetre (one side)

= S — T^^;. 41. Let specific heats in A, B be cTj, a^; Peltier
oT

effect coefficients P at hot, P^ at cold junction; temperature of

hot junction T, of cold Tp. Suppose unit quantity of electricity

to pass from the hot to the cold junction through A. Measure

all energy in ergs. Then work done = E. Heat absorbed

at junctions = P — Pj. Heat absorbed by A =
j

(tjdT

= — r <r,dT. Heat absorbed by B = fz <r^T. First Law
J To J To

ofThermodynamics gives E = P — Pj — /
(ffj — a^d"^. Second

J To

Law
(.f

= o) gives
J
- ^o _ J^^^^t + /^^^^T = o.

By differentiating these, we get (i) -_=-== — (a^ — a^;
a 1 al

Hence, m (.), ^, = ^ "
^jX^),

= Tg. Then, in (ii) a, - a,

42. If there are n positive ions
'

and n negative ions per cubic centimetre, -^ = — 6n\
dt

.-. --L ^ = e,^ + c = et,±-± = et. 43. ^, = --.c»,
n^ at n % % dt

(ii)
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log(-l) = log. + n log.. .-. log(-
^J^

- log(-
JJ^

= ^(logCD — logcv). In 1st experiment, mean concentration

= 171. IS. mean velocity = 188-84 - 153-46 = 35:38. j^
23 23

2nd. mean concentration = 77" 52, mean velocity = ^^. Hence
20

n = flog2Sl38 _ log^^) 4- (logi7i-is - log77-52) = 2-95.
\ 23 20 /

The mean concentration and mean velocity are approximately the

concentration and velocity at the middle of the interval of time.

See Van 't Hoff. Lectures on Theoretical and Physical Chemistry

(1898). p. 200. 44. (i) See Chapter XV. (ii) Equation

may be written «g =
(g - A)'(A - B) (b^ ~ A^)

+ (C-BHC-.A) (c^^~B^J- Integrate with respect

to X from o to x. .'. .t =
(g _ a)V - B){'°g|^ " '°4}

+ a similar term =
(C-A)(A - B) I ^A(B -x)] ^

dx
which is the result stated. 45. (i) -=- = /c(A — xf. .'. Kt

dt

=
/:(-A^3

= \ {(A^.-^.}- (") Here A = A- so

that, for a trimolecular reaction, 2 Kt = -. ,-= — 100. The
(i — \oxY

values of «• calculated from the data and this equation are 1-04,

0-99, I '03, i'02, I -06, i-oi. (iii) The chemical equation is

quantitatively correct, but need not represent the actual reaction,

which may be a combination of slow and swift exchanges. The
result indicates that the dominant change is a slow trimolecular

one, which is followed by swift adjustments to bring the final

result into accord with the stoichiometrical equation (or equation

of relative proportions) given. 46. 0-00303 = Kj X Caoid

iX Calcohol = Ki X I X 12-756. .•. Ki = -000238 in mols per

'litre — minute units. 47. Kj = -000996 -r (i X 12-215)

i= -0000815. 48. (i) Ceth. = 0-7144, Caoid = I — 0-7144
'= 0-2856, Calcohol = 12-756 — 0-7144 = 12-0416, Cwater

= 12-756 + 0-7144 = 13-4704. (ii) In equilibrium, the re-

action velocities in the two directions are equal, i.e. Kj X Caoid
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X Calcohol = Ka X Ceth. X Cwater. (iii)
°-7I44 X '3-4704
0-2856 X 12-0416

= 2-80, ^ (Exs. 46, 47) = -"""^aS = 2.92. 49. (i) Plot
K2 -0000015

logijK against T. The four points will be found to lie nearly

in a line. Draw a line to pass through the points as nearly

as possible. Take two points some distance apart on this line,

and find a and b by substituting the co-ordinates of these points

in the equation logj„K = a -|- bT. Various equally good
results, differing slightly from each other, may be got. One
result is logj(,K = — 5-79 + o-043T. Another method, not so

accurate, is to determine a and b from two of the points given

by the table, without using a graph, (ii) Rise of temperature

enormously increases the speed of reactions. In the present

case, e.g., if the speed is 3K at T', we have logio3^ = — 5-79
4- O-043T', and by subtraction log,53^ — logio^ = 0'043(T' — T),

or T — T = '-5SJ23 = 1 1. 1, so that a rise of 11° C. trebles the
0-043

reaction velocity. A rule that applies to many cases is that the

speed of reaction is doubled or trebled when the temperature

is raised by 10° C. 50. If :r = concentration of inverted

sugar at time /, a = initial concentration of cane sugar, then

-J-
= K(a — x) and Kt = log—^— When x = T^Jja, Kt = logeio.

at a — X

The times are .'. -^4— and -^-3— min.
76s 35 -5
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